SUPPLEMENTARY DATA Source apportionment of polycyclic ...

3 downloads 5618 Views 1MB Size Report
where, Ct and Co (mass cm-3) are the concentrations in the disk at the end and beginning of the sampling, respectively. Sampling rate (R, m3 day-1) is ...
SUPPLEMENTARY DATA Source apportionment of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in ambient air of an industrial region in Turkey Yagmur Meltem Aydin *, Melik Kara, Yetkin Dumanoglu, Mustafa Odabasi, Tolga Elbir Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir, Turkey

Content Table Captions Table S1. Summary of atmospheric concentrations (ng m-3) of Σ14PAHs Table S2. Summary of atmospheric concentrations (pg m-3) of Σ35PCBs Figure Captions Figure S1. Wind-roses showing the frequency (%) of prevailing wind directions during the sampling periods. Figure S2. Overall average concentrations (ng m-3) of individual PAHs (for all sites and seasons). Figure S3. Overall average concentrations (pg m-3) of individual PCBs (for all sites and seasons). Figure S4. Seasonal variation of source contributions to the Σ14PAH concentrations (ng/m3) in the study area. Figure S5. Seasonal variation of source contributions to the Σ35PCB concentrations (pg/m3) in the study area.

*

Corresponding author: Yagmur Meltem Aydin, Tel: +90 232 3017097, Fax: +90 232 4530922, Email: [email protected]

S1

Calculation of Effective Air Sampling Volume The effective sampling air volumes for PAHs and PCBs for a 1-month sampling period were calculated using relationship developed by Shoeib & Harner (2002) for the non-polar hydrophobic chemicals. PUF disk effective air volume (Vair) is calculated as:

𝑉𝑎𝑖𝑟 = (𝐾ʹ𝑃𝑆𝑀−𝐴 ) × (𝑉𝑃𝑆𝑀 ) × �1 − 𝑒𝑥𝑝 �− 𝐾ʹ𝑃𝑆𝑀−𝐴 = 𝐾𝑃𝑆𝑀−𝐴 × 𝜌𝑃𝑆𝑀

𝑘𝐴 𝑡 × �� 𝐾ʹ𝑃𝑆𝑀−𝐴 𝐷𝑓𝑖𝑙𝑚

(1) (2)

3

-3

where,VPSM is the volume (cm ) of the PUF disk, ρPSM is the density (g cm ) of the disk, t is the exposure time -1

(day), kA is the air-side mass transfer coefficient (MTC) (cm d ), and Dfilm (m)is the effective film thickness (Pozo et al., 2004). KPSM-A is the passive sampling medium (PSM)-air partition coefficient but differs from the K'PSM-A (dimensionless). For PUF disk: (3)

𝑙𝑜𝑔𝐾𝑃𝑆𝑀−𝐴 = 𝑙𝑜𝑔𝐾𝑃𝑈𝐹−𝐴 = 0.6366 𝑙𝑜𝑔𝐾𝑂𝐴 − 3.1774

where, KOA is the octanol-air partition coefficient (Shoeib & Harner, 2002). kA was calculated using the recovery of depuration compounds initially spiked into the PUF disk: 𝐶𝑡 1 𝑘𝐴 = 𝑙𝑛 � � 𝐷𝑓𝑖𝑙𝑚 𝐾ʹ𝑃𝑆𝑀−𝐴 � � 𝐶0 𝑡

(4)

-3

where, Ct and Co (mass cm ) are the concentrations in the disk at the end and beginning of the sampling, 3

-1

respectively. Sampling rate (R, m day ) is calculated by Shoeib & Harner (2002): (5)

𝑅 = 𝑘𝐴 𝐴𝑃𝑆𝑀

2

where, APSM is the planar surface area (m ) of the PUF disk. 3

-1

Average sampling rates (R, m d ) calculated using the loss of depuration compounds (Equation 5) ranged 3

-1

from 4.21±1.37 to 4.93±1.50 m d for all sampling periods. Then, the air-side MTCs were calculated from these sampling rates were used along with compound-specific KPSM-A values (Equation 1) to determine the -3

effective sampling volumes (Vair) for individual PCBs and PAHs. Concentrations in the air Ci,air (ng m ) were calculated as:

𝐶𝑖,𝑎𝑖𝑟 =

𝑚𝑖 𝑉𝑎𝑖𝑟

(6) -1

where, mi is the mass of a target compound (i) in the passive samples (ng sample ). S2

Table S1. Summary of atmospheric concentrations (ng m-3) of Σ14PAHs Sampling Sites b S1

a

2.0

35.4

136

19.2

Geometric Mean 20.7

S2

b

2.9

24.6

162

8.9

17.9

16.7

49.6

75.5

S3

a

3.2

5.5

35.0

6.6

7.9

6.0

12.6

15.0

S4

a

5.9

9.9

38.2

9.2

11.9

9.5

15.8

15.0

S5

a

1.6

8.5

74.0

6.1

8.9

7.3

22.6

34.4

S6

b

6.5

24.0

80.8

39.2

26.5

31.6

37.6

31.7

S7

b

13.5

31.7

359

39.5

49.6

35.6

111

166

S8

b

11.2

21.5

255

31.5

37.3

26.5

79.7

117

S9

a

Summer

Fall

Winter

Spring

Median

Average

27.3

48.2

Standard Deviation 60.2

40.2

57.4

141

80.1

71.5

68.8

79.7

44.1

S10

a

45.0

46.9

130

54.4

62.2

50.6

69.2

41.1

S11

a

293

251

422

476

349

357

361

106

S12

a

24.9

31.7

112

109

55.7

70.6

69.4

47.5

S13

a

68.5

257

405

113

168

185

211

153

S14

a

16.2

41.4

66.4

31.5

34.4

36.4

38.8

21.1

S15

b

7.4

31.2

175

37.4

35.1

34.3

62.8

76.0

S16

b

12.1

13.0

279

62.6

40.7

37.8

91.6

127

S17

b

12.9

33.6

87.8

27.8

32.1

30.7

40.5

32.7

S18

b

7.5

17.3

138

40.6

29.2

29.0

51.0

60.0

S19

b

5.5

18.5

129

18.4

22.2

18.4

42.9

58.0

S20

b

7.9

18.4

88.5

28.4

24.6

23.4

35.8

36.1

S21

b

34.2

21.6

164

67.7

53.5

50.9

71.8

64.3

S22

a

31.7

33.5

114

58.8

51.6

46.1

59.4

38.2

S23

a

21.7

25.0

124

31.1

38.0

28.0

50.5

49.2

S24

b

16.2

12.1

87.2

16.6

23.1

16.4

33.0

36.2

S25

b

45.1

51.7

123

34.3

56.0

48.4

63.6

40.4

S26

a

12.2

35.7

71.5

52.8

35.8

44.3

43.0

25.2

S27

a

277

282

421

180

278

279

290

99.1

S28

a

58.3

64.6

142.7

72.7

79.1

68.6

84.6

39.2

S29

a

838

258

266

314

367

290

419

280

S30

a

316

89.3

97.9

137

139

117

160

106

S31

a

27.1

80.7

105

50.1

58.3

65.4

65.8

34.2

S32

b

15.5

15.1

132

30.1

31.0

22.8

48.1

56.2

S33

a

32.5

37.6

96.6

42.2

47.2

39.9

52.2

29.8

S34

a

248

201

140

92.6

159

170

170

68.2

S35

b

56.9

48.4

238

196

106

126

135

96.4

S36

b

2.2

11.7

28.0

17.2

10.6

14.5

14.8

10.8

S37

b

39.0

63.9

115

56.0

63.3

60.0

68.5

32.8

S38

b

18.1

17.1

40.6

24.3

23.5

21.2

25.0

10.9

S39

b

61.1

40.7

157

145

86.6

103

101

58.4

S40

b

22.2

29.9

171

67.3

52.6

48.6

72.7

68.7

Industrial sites,

b

Non-industrial sites

S3

Table S2. Summary of atmospheric concentrations (pg m-3) of Σ35PCBs Sampling Sites b S1

a

300

950

1100

640

Geometric Mean 670

S2

b

1100

2800

1300

1000

1400

1200

1600

850

S3

a

260

710

220

670

410

460

470

260

S4

a

650

1100

310

910

670

780

740

340

S5

a

1100

600

340

810

660

700

720

340

S6

b

1600

1600

1400

2300

1700

1600

1700

360

S7

b

460

1000

470

810

650

640

690

270

S8

b

610

1300

800

940

880

870

920

300

S9

a

Summer

Fall

Winter Spring

Median

Average

800

750

Standard Deviation 350

2000

4200

3500

1800

2700

2700

2900

1100

S10

a

6500

3000

3000

2100

3300

3000

3700

2000

S11

a

54000

25000

7800

30000

24000

27000

29000

19000

S12

a

2200

3000

6500

4300

3700

3600

4000

1900

S13

a

910

3500

8100

1400

2500

2500

3500

3300

S14

a

960

2500

1800

1300

1500

1600

1600

680

S15

b

880

2300

1500

1800

1500

1600

1600

590

S16

b

510

850

640

710

670

670

680

140

S17

b

620

570

150

580

420

570

480

220

S18

b

420

410

140

700

360

420

420

230

S19

b

410

1100

540

1100

720

820

780

360

S20

b

290

540

190

490

350

390

380

170

S21

b

2100

2200

1400

2600

2000

2100

2100

510

S22

a

31000

35000

15000

23000

25000

27000

26000

8800

S23

a

4900

5700

2400

7200

4700

5300

5100

2000

S24

b

8700

1800

490

1500

1800

1600

3100

3800

S25

b

13000

7600

3700

7200

7100

7400

7800

3700

S26

a

6800

4600

2500

22000

6500

5700

9000

8800

S27

a

5900

38000

22000

13000

16000

18000

20000

14000

S28

a

38000

36000

12000

19000

24000

27000

26000

13000

S29

a

230000

87000

15000

44000

61000

66000

94000

96000

S30

a

64000

17000

3400

14000

15000

15000

25000

27000

S31

a

23000

17000

7300

15000

15000

16000

16000

6700

S32

b

190

440

240

530

320

340

350

160

S33

a

12000

6600

2500

7600

6300

7100

7200

3900

S34

a

39000

15000

3900

9300

12000

12000

17000

16000

S35

b

13000

7000

1100

13000

5900

9800

8400

5500

S36

b

1100

1700

370

2300

1100

1400

1400

830

S37

b

8100

3900

1500

5400

4000

4700

4700

2800

S38

b

6000

2400

480

2500

2100

2500

2900

2300

S39

b

1000

1000

220

1500

760

1000

940

520

S40

b

54000

2200

380

4700

3800

3500

15000

26000

b

Industrial sites, Non-industrial sites

S4

Summer

Autumn

Winter

Spring

Figure S1. Wind-roses showing the frequency (%) of prevailing wind directions during the sampling periods.

S5

90

Concentration (ng m-3)

80 70 60 50 40 30 20 10 0

ACL

ACT

FLN

PHE

ANT

CRB

FL

PY

BaA

CHR

BaP

IcdP

DahA BghiP

Figure S2. Overall average concentrations (ng m-3) of individual PAHs (for all sites and seasons). Error bars indicate 1 SD. Acenaphthylene (ACL), acenaphthene (ACT), fluorene (FLN), phenanthrene (PHE), anthracene (ANT), carbazole (CRB), fluoranthene (FL), pyrene (PY), benz[a]anthracene (BaA), chrysene (CHR), benz[a]pyrene (BaP), indeno[1,2,3-c,d]pyrene (IcdP), dibenzo[a,h]anthracene (DahA). 4500 4000 3500

Concentration (pg m-3)

3000 2500 2000 1500 1000

0

PCB-18 PCB-17 PCB-31 PCB-28 PCB-33 PCB-52 PCB-49 PCB-44 PCB-74 PCB-70 PCB-95 PCB-101 PCB-99 PCB-87 PCB-110 PCB-82 PCB-151 PCB-149 PCB-118 PCB-153 PCB-132 PCB-105 PCB-138 PCB-158 PCB-187 PCB-183 PCB-128 PCB-177 PCB-171 PCB-156 PCB-180 PCB-170 PCB-199 PCB-194 PCB-206

500

Figure S3.Overall average concentrations (pg m-3) of individual PCBs (for all sites and seasons). Error bars indicate 1 SD.

S6

Contributions (ng m-3)

(a) Summer

700

Unburned crude oil and petroleum products

Diesel exhaust emissions

Gasoline exhaust emissions

Iron-steel production

Biomass/Coal combustion

600 500 400 300 200 100 0

(b) Fall

Contributions (ng

m-3)

700

Unburned crude oil and petroleum products

Diesel exhaust emissions

Gasoline exhaust emissions

Iron-steel production

600 500 400 300 200 100 0

Figure S4. Seasonal variation of source contributions to the Σ14PAH concentrations (ng/m3) in the study area.

S7

Biomass/Coal combustion

(c) Winter

Contributions (ng m-3 )

700

Unburned crude oil and petroleum products Gasoline exhaust emissions

Diesel exhaust emissions Iron-steel production

Biomass/Coal combustion

600 500 400 300 200 100 0

(d) Spring

Contributions (ng m-3)

700

Unburned crude oil and petroleum products Gasoline exhaust emissions

Diesel exhaust emissions Iron-steel production

600 500 400 300 200 100 0

Figure S4. Continued.

S8

Biomass/Coal combustion

(a) Summer

Coal and wood combustion

Technical PCB mixtures

Iron-steel production

Contributions (pg m-3)

35000 30000 25000 20000 15000 10000 5000 0

(b) Fall

Coal and wood combustion

Technical PCB mixtures

Contributions (pg m-3)

35000 30000 25000 20000 15000 10000 5000 0

Figure S5. Seasonal variation of source contributions to the Σ35PCB concentrations (pg/m3) in the study area. S9

Iron-steel production

(c) Winter

Contributions (pg m-3)

35000

Coal and wood combustion

Technical PCB mixtures

Iron-steel production

Coal and wood combustion

Technical PCB mixtures

Iron-steel production

30000 25000 20000 15000 10000 5000 0

(d) Spring

Contributions (pg m-3)

35000 30000 25000 20000 15000 10000 5000 0

Figure S5. Continued.

S10

Suggest Documents