La Tolérance d'Usinage chez Citroën dans les Années (19)60. P. de Faget de Casteljau . . . . . . . . . . . . . . . . . . . . . 69. Avoiding Local Minima for Deformable ...
Surface Fitting and Multiresolution Methods edited by Alain Le M´ ehaut´ e, Christophe Rabut, and Larry. L. Schumaker
Vanderbilt University Press, 1997
CONTENTS Fast Evaluation of Cardinal Radial Basis Interpolants G. Allasia and P. Giolito . . . . . . .
.
.
.
.
.
.
.
.
.
.
1
Scaled Pivoting and Error Bounds for Totally Positive Linear Systems P. Alonso, M. Gasca, and J.M. Pe˜ na . . . . . . . . .
.
.
.
.
.
.
.
.
.
9
Reproducing Kernels of Vector-Valued Functions Spaces L. Amodei . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
17
Multivariate Mean Value Interpolation A. Augel . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
27
The Error in Polynomial Tensor-Product, and in Chung-Yao Interpolation C. de Boor . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
35
A Study of Biorthogonal Sinusoidal Wavelets C.K. Chui and X. Shi . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
51
Quasi-Interpolant Spline Functions in the Hilbert Space D L (R) C. Conti . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
67
An Application of Multiwavelet Analysis to Signal Compression M. Cotronei and L. Puccio . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
75
Biorthogonal Box Spline Wavelet Bases S. Dahlke, K. Gr¨ ochenig, and V. Latour .
.
.
.
.
.
.
.
.
.
.
.
83
Wavelets in Numerical Analysis and their Quantitative Properties W. Dahmen, A. Kunoth, and K. Urban . . . . . . .
.
.
.
.
.
.
.
.
.
.
93
Solving Partial Differential Equations by Collocation with Radial Basis Functions G.E. Fasshauer . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
131
Thinning, Inserting, and Swapping Scattered Data M.S. Floater and A. Iske . . . . . .
−m 2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
139
Constructing Pairs of Refinable Bivariate Spline Functions T.N.T. Goodman . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
145
Interpolating and Approximating Scattered 3D Data with Hierarchical Tensor Product B-Splines G. Greiner and K. Hormann . . . . . . . . . . . . . . . . . . . .
163
Wavelet Decomposition for Toeplitz Matrices C. Guerrini and L.B. Montefusco . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
173
Interpolation by New Families of B-Splines on Uniform Meshes of the Plane X. Guillet . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
183
Topics in Scattered Data Interpolation and Non-Uniform Sampling K. Jetter and J. St¨ ockler . . . . . . . . . . .
.
.
.
.
.
.
.
191
1
.
.
.
.
.
.
.
.
.
Adaptative and Linearly Independent Multilevel B-Splines R. Kraft . . . . . . . . . . . . . .
.
.
.
.
.
.
209
Smooth Interpolation by a Convexity Preserving Nonlinear Subdivision Algorithm F. Kuijt and R. van Damme . . . . . . . . . . . . . . .
.
.
.
.
.
219
Open Problems of Approximation G.G. Lorentz . . . . .
.
.
.
.
.
.
225
Nonexistence of Compactly Supported Box Splines Prewavelets in Sobolev Spaces R.A. Lorentz and P. Oswald . . . . . . . . . . . . . . .
.
.
.
.
.
235
Sobolev Norm Convergence of Stationary Subdivision Schemes C. Micchelli and T. Sauer . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
245
Discrete Orthogonal Transforms and M-Band Wavelets for Image Compression L.B. Montefusco and D. Lazzaro . . . . . . . . . . . . .
.
.
.
.
.
.
261
Optimal Partitions in Bivariate Segment Approximation G. N¨ urnberger . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
271
Approximating by Ridge Functions A. Pinkus . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
279
On Stability of Scaling Vectors G. Plonka . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
293
On a Spline Multiresolution Analysis with Homogeneous Boundary Conditions E. Quak . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
301
On the Efficiency of Interpolation by Radial Basis Functions R. Schaback . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
309
Functional Data Fitting and Fairing with Triangular B-Splines H.-P. Seidel . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
319
Nonlinear Approximation with Walsh Atoms L.F. Villemoes . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
329
Sobolev-Type Error Estimates for Interpolation by Radial Basis Functions H. Wendland . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
337
Unified IFS-Based Model to Generate Smooth or Fractal Forms C.E. Zair and E. Tosan . . . . . . . . . . .
.
.
.
.
.
.
.
345
.
.
2
.
.
.
.
.
.
.
Curves Surfaces with Applications in CAGD edited by Alain Le M´ ehaut´ e, Christophe Rabut, and Larry. L. Schumaker
Vanderbilt University Press, 1997
CONTENTS Parallelization Strategies for the B-Spline Curve Interpolation Problem M. D’Apuzzo and L. Maddalena . . . . . . . . . . .
.
.
.
.
.
.
.
.
1
Connection-Matrix Splines by Divided Differences R.H. Bartels and J.C. Beatty . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
9
Massic-Vector-Based Conics Modelling J.P. B´ecar and J.C. Fiorot . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
17
Globally G Free Form Surfaces Using Kirchhoff-Love Plate Energy Methods M. Bercovier, O. Volpin, and T. Matskewich . . . . . . . . .
.
.
.
.
.
.
25
A New Approach to Tchebycheffian B-Splines D. Bister and H. Prautzsch . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
35
Flaw Removal on Surfaces J. Bousquet and M. Daniel .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
43
On some Polynomial Curves Derived from Trigonometric Kernels J. Cao, H.H. Gonska, and D.P. Kacs´ o . . . . . . .
.
.
.
.
.
.
.
.
.
.
53
Spline Curves in Polar and Cartesian Coordinates G. Casciola and S. Morigi . . . . . .
.
.
.
1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
61
La Tol´erance d’Usinage chez Citro¨en dans les Ann´ees (19)60 P. de Faget de Casteljau . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
69
Avoiding Local Minima for Deformable Curves in Image Analysis L.D. Cohen . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
77
Variable Degree Polynomial Splines P. Costantini . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
85
Approximation of Monotone Functions: A Counter Example R.A. DeVore, D. Leviatan, and I.A. Shevchuk . . .
.
.
.
.
.
.
.
.
.
.
.
.
95
Uniform Point Distribution on a Circle J.-C. Fiorot and I. Cattiaux-Huillard
.
.
.
.
.
.
.
.
.
.
.
.
103
BR-Form of an Entire Rational Curve with Preassigned Point J.-C. Fiorot and P. Jeannin . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
111
Optimal Convexity Preserving Bases M. Garc´ıa-Esnaola and J.M. Pe˜ na
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
119
Rational Interpolation on the Unit Circle Th. Gensane . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
127
Designing Nonlinear Models for Flexible Curves S. Girard, B. Chalmond, and J.M. Dinten .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
135
1
SK-Spline Interpolation on the Torus Using Number Theoretic Knots S. Gomes, A.K. Kushpel, J. Levesley, and D.L. Ragozin . . .
.
.
.
.
.
.
.
.
.
143
Shape Preserving Interpolation by G2 Curves in Three Dimensions T.N.T. Goodman and B.H. Ong . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
151
Fairing Bicubic B-Spline Surfaces Using Simulated Annealing S. Hahmann and S. Konz . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
159
Positivity and Convexity Criteria for Bernstein-B´ezier Polynomials over Simplices T.X. He . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
169
Fitting Uncertain Data with NURBS W. Heidrich, R. Bartels, and G. Labahn
.
.
.
.
.
.
.
.
.
.
.
.
.
177
Interpolation and Approximation with Developable Surfaces J. Hoschek and M. Schneider . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
185
Sectional Curvature-Preserving Interpolation of Contour Lines B. J¨ uttler . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
203
Analysis of Curvature Related Surface Shape Properties J. Kaasa and G. Westgaard . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
211
On an Almost-Convex-Hull Property D.P. Kacs´ o and H.-J. Wenz .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
217
Developable Surfaces with Creases Y.L. Kergosien . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
223
Universal Parametrizations of some Rational Surfaces R. Krasauskas . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
231
Curves and Surfaces for Computer Graphics: Theoretical Results Y. Kuzmin and M. Daniel . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
239
Generalized Tension B-Splines B.I. Krasov and P. Sattayatham
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
247
Shape Effects with Polynomial Chebyshev Splines P.J. Laurent, M.L. Mazure, and G. Morin .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
255
Interpolation with Triangulations and Curvature Minimization M. L´eger . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
263
On Convexity and Subharmonicity of some Functions on Triangles J. Lorente-Pardo, P. Sablonni`ere, and M.C. Serrano-P´erez .
.
.
.
.
.
.
.
.
.
.
271
Marching Methods in Surface-Surface Intersection E. Malgras . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
279
Algorithms for Blossoms S. Mann . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
287
Generalized Parameter Representations of Tori, Dupin Cyclides and Supercyclides C. M¨ aurer . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
295
Korovkin Type Results for Shape Preserving Operators F.-J. Mu˜ noz-Delgado and D. C´ ardenas-Morales .
.
.
.
.
.
.
.
.
.
.
.
.
.
303
Stable Progressive Smoothing A. Nigro . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
311
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 2
.
Riemannian Quadratics L. Noakes . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
319
Approximation of Offset Curves and Surfaces by Discrete Smoothing Dm -Splines M. Pasadas, J.J. Torrens, and M.C. L´ opez de Silanes . . . . . . . .
.
.
.
.
.
329
Algorithm for Computing the Product of two B-Splines L. Piegl and W. Tiller . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
337
Smoothing Spatial Cubic B-Splines under Shape Constraints K.G. Pigounatis and P.D. Kaklis . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
345
Some Error Estimates for Periodic Interpolation on Full and Sparse Grids G. P¨ oplau and F. Sprengel . . . . . . . . . . . . . .
.
.
.
.
.
.
.
355
Curved Surfaces Reconstruction Based on Parallels W. Puech, J.-M. Chassery and I. Pitas . . .
.
.
.
.
.
.
.
363
.
.
.
.
.
.
.
Zonal Kernels, Approximations and Positive Definiteness on Spheres and Compact Homogeneous Spaces D.L. Ragozin and J. Levesley . . . . . . . . . . . . . . . . . . . . 371 Interpolation by Pieces of Euler’s Elastica K.-D. Reinsch . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
379
A Knot Insertion Algorithm for Weighted Cubic Splines Mladen Rogina . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
387
Rational Speed Pseudo-Quadratic B-Splines M.A. Sabin . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
395
A Parametrization Technique for the Control Point Form Method A. Sestini and R. Morandi . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
403
Planar Shape Enhancement and Exaggeration A. Steiner, R. Kimmel, and A.M. Bruckstein
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
411
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
419
A Sequence of B´ezier Curves Generated by Successive Pedal-Point Constructions K. Ueda . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
427
From Degenerate Patches to Triangular and Trimmed Patches M. Vigo, N. Pla, and P. Brunet . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
435
Spline Orbifolds J. Wallner and H. Pottmann
.
.
.
.
.
.
.
.
.
.
.
445
Numerically Stable Conversion between the B´ezier and B-Spline Forms of a Curve J.R. Winkler . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
465
G2 continuous G-Splines: an Interpolation Property R. Zeifang . . . . . . . . . . . .
.
.
.
.
.
473
On Geometric Continuity of Isophotes H. Theisel . . . . . . . .
.
.
.
.
.
.
.
.
.
3
.
.
.
.
.
.
.
.
.
.
.
.