M.H. Perrott. Why Are Digital Phase-Locked Loops Interesting? ..... M.H. Perrott.
Example Calculation for Delay Chain TDC ... type, order}. Proposed Closed Loop
Design Approach .... Simplified view of: Abas, et al., Electronic Letters, Nov 2002.
Tutorial on Digital Phase-Locked Loops CICC 2009 Michael H. Perrott September 2009
Copyright © 2009 by Michael H. Perrott
Why Are Digital Phase-Locked Loops Interesting?
Performance is important
The standard analog PLL implementation is problematic in many applications
- Phase noise can limit wireless transceiver performance - Jitter can be a problem for digital processors - Analog building blocks on a mostly digital chip pose design and verification challenges - The cost of implementation is becoming too high … Can digital phase-locked loops offer excellent performance with a lower cost of implementation?
M.H. Perrott
2
Just Enough PLL Background …
What is a Phase-Locked Loop (PLL)? ref(t)
ref(t)
out(t)
out(t)
e(t)
v(t) ref(t)
Phase Detect
e(t)
e(t)
v(t)
v(t) Analog Loop Filter
out(t)
VCO
de Bellescize Onde Electr, 1932
VCO efficiently provides oscillating waveform with variable frequency PLL synchronizes VCO frequency to input reference frequency through feedback
- Key block is phase detector
Realized as digital gates that create pulsed signals M.H. Perrott
4
Integer-N Frequency Synthesizers ref(t) div(t) e(t)
v(t) Fout = N Fref
ref(t)
Phase Detect
e(t)
v(t) Analog Loop Filter
out(t)
VCO div(t)
Divider
Sepe and Johnston US Patent (1968)
N
Use digital counter structure to divide VCO frequency
Use PLL to synchronize reference and divider output
- Constraint: must divide by integer values
Output frequency is digitally controlled M.H. Perrott
5
Fractional-N Frequency Synthesizers Kingsford-Smith US Patent (1974)
ref(t)
Wells US Patent (1984)
div(t) e(t)
v(t)
Fout = M.F Fref ref(t)
Phase Detect
e(t)
v(t) Analog Loop Filter
out(t)
VCO div(t) Nsd[k]
Divider Σ−Δ Modulator
N[k]
Riley US Patent (1989) JSSC ‘93 M.F
Dither divide value to achieve fractional divide values
- PLL loop filter smooths the resulting variations
Very high frequency resolution is achieved M.H. Perrott
6
The Issue of Quantization Noise ref(t) div(t) e(t)
v(t) Fout = M.F Fref
ref(t)
Phase Detect
e(t)
v(t) Analog Loop Filter
out(t)
VCO div(t) Nsd[k]
Divider Σ−Δ Modulator
N[k]
M.F
Σ−Δ Quantization Noise
Limits PLL bandwidth Increases linearity requirements of phase detector
M.H. Perrott
f 7
Striving for a Better PLL Implementation
Analog Phase Detection
ref(t)
1 D Q reset
div(t)
1 D Q Reg
ref(t)
phase error
error(t)
Phase Detect
ref(t) div(t) error(t)
out(t)
Analog Loop Filter VCO
div(t)
M.H. Perrott
Divider
Pulse width is formed according to phase difference between two signals Average of pulsed waveform is applied to VCO input
9
Tradeoffs of Analog Approach
ref(t) div(t) error(t)
ref(t)
Phase Detector Characteristic
Average of error(t)
Phase Detector Signals
phase error
Phase Detect
out(t)
Analog Loop Filter VCO
div(t)
Divider
Benefit: average of pulsed output is a continuous, linear function of phase error Issue: analog loop filter implementation is undesirable
M.H. Perrott
10
Issues with Analog Loop Filter
error(t)
Charge Pump
Vout Icp Cint
ref(t)
Phase Detect
out(t)
Analog Loop Filter VCO Divider
M.H. Perrott
Charge pump: output resistance, mismatch Filter caps: leakage current, large area 11
Going Digital … ref(t)
Phase Detect
out(t)
Analog Loop Filter VCO Divider
ref(t)
Time -toDigital
out(t)
Digital Loop Filter DCO Divider
M.H. Perrott
Staszewski et. al., TCAS II, Nov 2003
Digital loop filter: compact area, insensitive to leakage Challenges:
- Time-to-Digital Converter (TDC) - Digitally-Controlled Oscillator (DCO)
12
Outline of Talk
M.H. Perrott
Overview of Key Blocks (TDC and DCO) Modeling & CAD Tools High Performance TDC design Quantization Noise Cancellation DCO based on an efficient passive DAC structure Divider Design Loop Filter Design Prototype with measured Results
13
Classical Time-to-Digital Converter div(t)
Delay
Delay
Delay
Delay
div(t) D Q
D Q
D Q
Reg
Reg
Reg
1 1 1 0 0
e[k]
e[k]
ref(t)
ref(t)
ref(t)
Time -toDigital div(t)
out(t)
Digital Loop Filter DCO Divider
Resolution set by a “Single Delay Chain” structure
Corresponds to a flash architecture
M.H. Perrott
- Phase error is measured with delays and registers
14
Impact of Limited Resolution and Delay Mismatch div(t)
1 1 1 0 0
e[k]
Phase Detector Characteristic
detector output
Delay varies due to mismatch
phase error
ref(t)
ref(t)
Time -toDigital div(t)
Integer-N PLL
Fractional-N PLL
out(t)
Digital Loop Filter DCO Divider
- Limit cycles due to limited resolution (unless high ref noise) - Fractional spurs due to non-linearity from delay mismatch
M.H. Perrott
15
Modeling of TDC quantization error
detector output
Phase Detector Characteristic
tq[k]
1 Δtdel time error
ref(t) T reference period
Time -toDigital div(t)
phase error[k]
T 2π
TDC Gain 1 Δtdel
e[k]
out(t)
Digital Loop Filter DCO Divider
Phase error converted to time error by scale factor: TDC introduces quantization error: tq[k] TDC gain set by average delay per step: Δtdel M.H. Perrott
T/2π
16
A Straightforward Approach for Achieving a DCO
ref(t)
Time -toDigital div(t)
M.H. Perrott
Varactor
Varactor
DAC
Analog Control
out(t)
Digital Loop Filter DCO Divider
Ferriss ISSCC 2007 Hsu ISSCC 2008
Use a DAC to control a conventional LC oscillator
- Allows the use of an existing VCO within a digital PLL - Can be applied across a broad range of IC processes
17
A Much More Digital Implementation
Varactor
Varactor ref(t)
Time -toDigital div(t)
M.H. Perrott
Digital Control
out(t)
Digital Loop Filter DCO Divider
Staszewski et. al., TCAS II, Nov 2003
Adjust frequency in an LC oscillator by switching in a variable number of small capacitors
- Most effective for CMOS processes of 0.13u and below
18
Leveraging Segmentation in Switched Capacitor DCO
Varactor
Fine Control
Varactor
Coarse Control
Binary Array 1x
2x
4x
2 nx
Unit Element Array 1x
1x
1x
1x
Similar in design as segmented capacitor DAC structures
Coarse and fine control segmentation of DCO
- Binary array: efficient control, but may lack monotonicity - Unit element array: monotonic, but complex control
- Coarse control: active only during initial frequency tuning (leverage binary array) - Fine control: controlled by PLL feedback (leverage unit element array to guarantee monotonicity)
M.H. Perrott
19
Leveraging Dithering for Fine Control of DCO
out(t)
Varactor
Varactor
ref(t)
Tuning Fine Control
in[k] Digital Loop Filter
Digital Σ−Δ Modulator
Divide-by-K T c=T/M
T
Coarse Initial Control Frequency
DCO
TDC out
Increase resolution by Σ−Δ dithering of fine cap array Reduce noise from dithering by
- Using small unit caps in the fine cap array - Increasing the dithering frequency (defined as 1/T ) c
M.H. Perrott
We will assume 1/Tc = M/T (i.e. M times reference frequency)
20
Calculation of Noise Spectrum: Switched Cap DCO
Phase noise
- Same as for
conventional VCO (tank Q, etc.)
Varactor
Varactor
Digital Control
Quantization Noise
Hntf(z)
Quantization noise from dithering
- See Section 3
of Supplemental Slides
M.H. Perrott
f
Phase Noise
qraw[k] z=ej2πfTc
f
q[k]
in[k] M
Tc
2πKv s
Φout(t)
s=j2πf 21
Modeling
Overall Digital PLL Model TDC
DCO DCO-referred Noise S Φn(f)
TDC-referred Noise S tq(e j2πfT) f tq[k] Φref[k]
T 2π
-20 dB/dec
f TDC Gain 1 Δtdel
Loop Filter
DT-CT
e[k] H(z)
T
z=ej2πfT Φdiv[k]
Φn(t) 2πKv s s=j2πf
Φout(t)
Divider CT-DT 1 N
1 T
TDC and DCO-referred noise influence overall phase noise according to associated transfer functions to output Calculations involve both discrete and continuous time
M.H. Perrott
23
Key Transfer Functions tq[k] Φref[k]
T 2π
TDC Gain 1 Δtdel
Loop Filter
DT-CT
e[k] H(z)
T
z=ej2πfT
Φdiv[k]
Φn(t) 2πKv s
Φout(t)
s=j2πf CT-DT
1 N
TDC-referred noise
DCO-referred noise
M.H. Perrott
1 T
24
Introduce a Parameterizing Function tq[k] Φref[k]
T 2π
TDC Gain 1 Δtdel
Loop Filter
DT-CT
e[k] H(z)
Φn(t)
T
2πKv s
z=ej2πfT
Φdiv[k]
Φout(t)
s=j2πf CT-DT
1 N
1 T
Define open loop transfer function A(f) as:
Define closed loop parameterizing function G(f) as:
- Note: G(f) is a lowpass filter with DC gain = 1
M.H. Perrott
25
Transfer Function Parameterization Calculations
TDC-referred noise
DCO-referred noise
M.H. Perrott
26
Key Observations tq[k] Φref[k]
T 2π
TDC Gain 1 Δtdel
Loop Filter
DT-CT
e[k] T
H(z) z=ej2πfT
Φdiv[k]
Φn(t) 2πKv s
Φout(t)
s=j2πf CT-DT
1 N
1 T
TDC-referred noise Lowpass with a DC gain of 2πN
DCO-referred noise Highpass with a high frequency gain of 1 How do we calculate the output phase noise?
M.H. Perrott
27
Spectral Density Calculations x(t) CT
CT
y(t) H(f)
x[k] DT
y[k] H(ej2πfT)
DT
y(t)
x[k] DT
CT
CT
DT
DT
DT
CT
M.H. Perrott
CT
H(f)
28
Phase Noise Calculation TDC-referred Noise S tq(e j2πfT)
DCO-referred Noise S Φn(f)
-20 dB/dec
f tq[k] fo
f Φn(t)
2πN G(f)
TDC noise
- DT to CT calculation - Dominates PLL phase
noise at low frequency offsets
1-G(f)
fo
Φout(t)
DCO noise
- CT to CT calculation - Dominates PLL phase
noise at high frequency offsets
2 1 2πN G(f) S tq(e j2πfT) T 2
1- G(f) S Φn(f) dBc/Hz
fo M.H. Perrott
f 29
Example Calculation for Delay Chain TDC
Ref freq = 1/T = 50 MHz, Out freq = 3.6 GHz
2
Δtdel 12
S tq(e j2πfT)
f tq[k]
Inverter delay = Δtdel = 20 ps
fo
S Φout(f)
2πN G(f)
1 2πN G(f) T
2 2 Δtdel
12
tdc
fo
f
Note: G(f) = 1 at low offset frequencies
M.H. Perrott
30
CAD Tools
Closed Loop PLL Design Approach
Closed-Loop Performance Specifications {f o, type, order}
Open-Loop Design Approach
Open-Loop Characteristics |A(f)| A(f) {K,f p,f z, ...}
G(f) =
A(f) =
A(f) 1+A(f)
G(f) 1-G(f)
Proposed Closed Loop Design Approach
Classical open loop approach
Proposed closed loop approach
Closed-Loop Transfer Function G(f)
Lau and Perrott, DAC, June 2003
- Indirectly design G(f) using bode plots of A(f) - Directly design G(f) by examining impact of its specifications on phase noise (and settling time) - Solve for A(f) that will achieve desired G(f) Implemented in PLL Design Assistant Software http://www.cppsim.com
M.H. Perrott
32
Evaluate Phase Noise with 500 kHz PLL Bandwidth
Key PLL parameters:
- G(f): 500 kHz BW, Type II, 2 order rolloff - TDC noise: -94.7 dBc/Hz - DCO noise: -153 dBc/Hz at 20 MHz offset (3.6 GHz carrier) nd
M.H. Perrott
33
Calculated Phase Noise Spectrum with 500 kHz BW Output Phase Noise of Synthesizer
-60
Detector Noise VCO Noise Total Noise
-70
GSM Mask (Referenced to 3.6 GHz carrier)
-80
L(f) (dBc/Hz)
-90
Overall PLL Phase Noise TDC Noise
-100 -110 -120 -130
DCO Noise
-140 -150 -160 3 10
10
4
10
5
10
6
10
7
Frequency Offset (Hz)
TDC noise too high for GSM mask with 500 kHz PLL bandwidth M.H. Perrott
34
Change PLL Bandwidth to 100 kHz
Key PLL parameters:
- G(f): 100 kHz BW, Type = 2, 2 order rolloff - TDC noise: -94.7 dBc/Hz - DCO noise: -153 dBc/Hz at 20 MHz offset (3.6 GHz carrier) nd
M.H. Perrott
35
Calculated Phase Noise Spectrum with 100 kHz BW Output Phase Noise of Synthesizer
-60
Detector Noise VCO Noise Total Noise
-70 -80
Overall PLL Phase Noise
-90
L(f) (dBc/Hz)
GSM Mask (Referenced to 3.6 GHz carrier)
TDC Noise
-100 -110
DCO Noise -120 -130 -140 -150 -160 3 10
4
10
5
10
6
10
7
10
Frequency Offset (Hz)
GSM mask is met with 100 kHz PLL bandwidth M.H. Perrott
36
Loop Filter Design using PLL Design Assistant
PLL Design Assistant allows fast loop filter design
- See Section 4 of Supplemental Slides
Assumption: Type = 2, 2nd order rolloff
- Where:
M.H. Perrott
PLL Design Assistant provides the values of K, wp = 2πfp, wz = 2πfz 37
Example Digital Loop Filter Calculation
Assumptions
- Ref freq (1/T) = 50 MHz, Out freq = 3.6 GHz (so N = 72) - Δt = 20 ps, K = 12 kHz/unit cap - 100 kHz bandwidth, Type = 2 , 2 order rolloff del
v
nd
M.H. Perrott
38
Verify Calculations Using C++ Behavioral Modeling 1
1
D Q R
CppSim Module Description
R D Q
Name Inputs, Outputs Parameters Code
PFD
Charge Pump
- Hierarchical
description of system topology
Loop Filter
Divider Σ−Δ Modulator
Schematic
CppSim Module Description Name Inputs, Outputs Parameters Code
Code blocks
- Specification of module behavior using templated C++ code
Behavioral environment allows efficient architectural investigation and validation of calculations
- Fast simulation speed is essential for design investigation
M.H. Perrott
39
CppSim – A Fast C++ Behavioral Simulator
http://www.cppsim.com M.H. Perrott
40
How Do We Improve TDC Performance? Two Key Issues: • TDC resolution • Mismatch
Motivation TDC-referred Noise S tq(e j2πfT)
DCO-referred Noise S Φn(f)
-20 dB/dec
f tq[k]
f Φn(t)
2πN G(f)
fo
fo
PLL bandwidth dramatically influences relative impact of TDC and VCO noise Want high PLL bandwidth?
1-G(f)
Need low TDC Noise
Φout(t) Low PLL Bandwidth
High PLL Bandwidth
DCO Noise
dBc/Hz
dBc/Hz
TDC Noise
fo M.H. Perrott
TDC Noise
f
DCO Noise
fo
f 42
Improve Resolution with Vernier Delay Technique div(t)
Delay
Delay
Delay
Delay
div(t) D Q
D Q
D Q
Reg
Reg
Reg
e[k]
ref(t)
1 1 1 0 0
e[k]
1 1 1 0 0
e[k]
ref(t) Delay
div(t)
Vernier div(t)
ref(t)
M.H. Perrott
Delay
Delay
Delay
D Q
D Q
D Q
Reg
Reg
Reg
Delay2
Delay2
Delay2
ref(t)
Effective resolution: Delay-Delay2
e[k] Delay2
43
Issues with Vernier Approach
Mismatch issues are more severe than the single delay chain TDC
- Reduced delay is formed as difference of two delays
Large measurement range requires large area
- Initial PLL frequency acquisition may require a large range Delay
div(t)
Vernier div(t)
ref(t)
M.H. Perrott
Delay
Delay
1 1 1 0 0
Delay
D Q
D Q
D Q
Reg
Reg
Reg
Delay2
Delay2
Delay2
e[k]
ref(t)
Effective resolution: Delay-Delay2
e[k] Delay2
44
Two-Step TDC Architecture Allows Area Reduction Single Delay Chain
Vernier Delay
div(t)
Delay
Delay
Delay
Delay
Delay Mux
D Q
D Q
D Q
Reg
Reg
Reg
ref(t)
D Q
D Q
D Q
Reg
Reg
Reg
Delay2
Delay2
Delay2
Logic
Ramakrishnan, Balsara VLSID ‘06
Single delay chain provides coarse resolution (Folded) Vernier provides fine resolution
M.H. Perrott
Coarse e[k]
Fine e[k] Delay - Delay2
Delay
45
Two-Step TDC Using Time Amplification Single Delay Chain
div(t)
Delay
Delay
Single Delay Chain Time Amplifier Delay
Delay
Delay
Delay
Mux D Q
D Q
D Q
D Q
D Q
D Q
Reg
Reg
Reg
Reg
Reg
Reg
ref(t) Logic
Simplified view of: Lee, Abidi VLSI 2007
Single delay chain provides coarse and fine resolution Time amplification is used to improve resolution
M.H. Perrott
Coarse e[k]
Fine e[k]
Delay
Delay
Amplification of Time
46
Leveraging Metastability to Create a Time Amplifier in(t) ref(t) in(t)
ref(t)
Time Amplifier out(t)
Δtin
D Q
out(t)
Latch
Δtin
ref(t)
ref(t)
in(t)
in(t)
out(t)
out(t) Δtout
Δtout
Simplified view of: Abas, et al., Electronic Letters, Nov 2002 (note that actual implementation uses SR latch)
Metastability leads to progressively slower output transitions as setup time on latch is encroached upon
M.H. Perrott
- Time difference at input is amplified at output
47
Interpolating time-to-digital converter Tq
Start
Delay
Delay
Delay
1
Start
1 1 1
Stop
Tstop
Registers
Out
1 1 0
Out
Henzler et al., ISSCC 2008
Stop Tin
Interpolate between edges to achieve fine resolution Cyclic approach can also be used for large range
M.H. Perrott
48
An Oscillator-Based TDC Ring Oscillator
Vdd
Phase Error[1]
Phase Error[2]
3
3
div(t) ref(t) Osc(t)
Reset ref(t)
Counter Logic
div(t)
Count[k] Register e[k]
Count[k]
e[k]
Output e[k] corresponds to the number of oscillator edges that occur during the measurement time window Advantages
- Extremely large range can be achieved with compact area - Quantization noise is scrambled across measurements
M.H. Perrott
49
A Closer Look at Quantization Noise Scrambling Phase Error[1] Ring Oscillator
Vdd
Phase Error[2]
div(t) ref(t) Osc(t)
Reset ref(t)
Counter Logic
div(t)
Count[k] Register e[k]
Count[k] q[1]
Quant. Error[k] -q[0] e[k]
q[3] -q[2]
3
3
Quantization error occurs at beginning and end of each measurement interval As a rough approximation, assume error is uncorrelated between measurements
- Averaging of measurements improves effective resolution
M.H. Perrott
50
Deterministic quantizer error vs. scrambled error
Deterministic TDC do not provide inherent scrambling For oversampling benefit, TDC error must be scrambled! Some systems provide input scrambling (ΔΣ fractional-N PLL), while some others do not (integer-N PLL)
M.H. Perrott
51
Proposed GRO TDC Structure
A Gated Ring Oscillator (GRO) TDC Phase Error[1] Ring Oscillator
Phase Error[2]
div(t)
Enable ref(t) Osc(t) Reset ref(t)
Counter Logic
div(t)
Count[k] Register e[k]
Count[k] q[1]
Quant. Error[k] -q[0] e[k]
q[2] -q[1]
3
4
Enable ring oscillator only during measurement intervals
Quantization error becomes first order noise shaped!
- Hold the state of the oscillator between measurements - e[k] = Phase Error[k] + q[k] – q[k-1] - Averaging dramatically improves resolution!
M.H. Perrott
53
Improve Resolution By Using All Oscillator Phases Phase Error[1] Ring Oscillator
Phase Error[2]
div(t)
Enable ref(t)
Osc. Phases(t)
Reset ref(t)
Counters Logic
div(t)
Count[k] Register
Count[k]
e[k]
Helal, Straayer, Wei, Perrott VLSI 2007
Quant. Error[k] e[k]
q[1]
q[2] -q[1]
-q[0]
11
10
Raw resolution is set by inverter delay Effective resolution is dramatically improved by averaging M.H. Perrott
54
GRO TDC Also Shapes Delay Mismatch Enable
Measurement 1
Enable
Measurement 2
Enable
Measurement 3
Enable
Measurement 4
Barrel shifting occurs through delay elements across different measurements
- Mismatch between delay elements is first order shaped!
M.H. Perrott
55
Simple gated ring oscillator inverter-based core Enabled Ring Oscillator
Disabled Ring Oscillator
(a)
(b)
Delay Element
Enable
Gate the oscillator by switching the inverter cores to the power supply
Enable
Vo n-1 Vo n
Vo 5
Vo 3
M.H. Perrott
M3
Vo i-1
Vo 1
Vo 4 Vo 2
M4
Vo i M2
Enable
M1
56
GRO Prototype enable 15 Stage Gated Ring Oscillator En Dis
S Q R
enable(t) enable
Straayer, Perrott
M.H. Perrott
Logic
error[k]
GRO implemented as a custom 0.13 μm CMOS IC
57
Measured GRO Results Confirm Noise Shaping enable 15 Stage Gated Ring Oscillator Variable Delay
enable(t)
S Q R
enable 40
30
Input variable delay signal
Amplitude (dB)
20
Harmonics due to nonlinearity of variable delay
Logic
error[k]
10
0
-10
Noise shaped quant. noise
-20
-30 0.01
M.H. Perrott
0.1
1
Frequency (MHz)
10
100
58
Measured deadzone behavior of inverter-based GRO
Deadzones were caused by errors in gating the oscillator GRO “injection locked” to an integer ratio of FS Behavior occurred for almost all integer boundaries, and some fractional values as well Noise shaping benefit was limited by this gating error
M.H. Perrott
59
Next Generation GRO: Multi-path oscillator concept Single Input Single Output
Multiple Inputs Single Output
Use multiple inputs for each delay element instead of one Allow each stage to optimally begin its transition based on information from the entire GRO phase state Key design issue is to ensure primary mode of oscillation
M.H. Perrott
60
Multi-path inverter core Lee, Kim, Lee JSSC 1997
Mohan, et. al., CICC 2005
M.H. Perrott
61
Proposed multi-path gated ring oscillator
Hsu, Straayer, Perrott ISSCC 2008
Oscillation frequency near 2GHz with 47 stages… Reduces effective delay per stage by a factor of 5-6! Represents a factor of 2-3 improvement compared to previous multi-path oscillators
M.H. Perrott
62
A simple measurement approach… N-Stage Gated Ring Oscillator Enable
Reset Start
Counters Logic
Stop
Count[k] Register e[k]
Helal, Straayer, Perrott VLSI 2007
2 counters per stage * 47 stages = 94 counters each at 2GHz Power consumption for these counters is unreasonable Need a more efficient way to measure the multi-path GRO
M.H. Perrott
63
Count Edges by Sampling Phase
Calculate phase from:
1 counter and N registers Æ much more efficient
- A single counter for coarse phase information (keeps track of phase wrapping) - GRO phase state for fine count information
M.H. Perrott
64
Proposed Multi-Path Measurement Structure
Multi-path structure leads to ambiguity in edge position Partition into 7 cells to avoid such ambiguity Requires 7 counters rather than 1, but power still OK
M.H. Perrott
65
Prototype 0.13μm CMOS multi-path GRO-TDC Start Timing Generation
Stop
Enable
CLK
47-stage Gated Ring Oscillator Z1-47 State Register
Start Stop Enable CLK
1 2 3 4 5 6 7 Measurement Cells
Adder
Out
Straayer et al., VLSI 2008
Two implemented versions:
2-21mW power consumption depending on input duty cycle
- 8-bit, 500Msps - 11-bit, 100Msps version
M.H. Perrott
66
Measured noise-shaping of multi-path GRO 65,536 pt. FFT
-50
279.2
Input of 1.2pspp
-60 -70 -80 -90
-100
TDC Output after 1MHz LPF
(Hanning window + 20x averaging)
Filtered TDC Output
Power Spectral Density (dB ps2/Hz)
-40
Ideal variance of 50-Msps quantizer with 1ps steps
Noise of 80fsrms in 1MHz BW
104
105
106
107
279.0
278.8
1.2ps 278.6
0
40
80
120
Frequency (Hz)
Time (µ µs)
(a)
(b)
160
200
Data collected at 50Msps More than 20dB of noise-shaping benefit 80fsrms integrated error from 2kHz-1MHz Floor primarily limited by 1/f noise (up to 0.5-1MHz)
M.H. Perrott
67
Measured deadzone behavior for multi-path GRO
Only deadzones for outputs that are multiples of 2N
Size of deadzone is reduced by 10x
- 94, 188, 282, etc. - No deadzones for other even or odd integers, fractional output
M.H. Perrott
68
The Issue of Quantization Noise Due to Divider Dithering
The Nature of the Quantization Noise Problem Ref
Loop Filter
PFD
Out
Div N/N+1
1-bit Frequency M-bit ΔΣ Selection Modulator Quantization Noise Spectrum
Output Spectrum Noise
Frequency Selection
M.H. Perrott
Fout ΔΣ
PLL dynamics
Increasing PLL bandwidth increases impact of ΔΣ fractional-N noise
- Cancellation offers a way out!
70
Previous Analog Quantization Noise Cancellation
Phase error due to ΔΣ is predicted by accumulating ΔΣ quantization error Gain matching between PFD and D/A must be precise
Matching in analog domain limits performance M.H. Perrott
71
Proposed All-digital Quantization Noise Cancellation
Hsu, Straayer, Perrott ISSCC 2008
Scale factor determined by simple digital correlation Analog non-idealities such as DC offset are completely eliminated
M.H. Perrott
72
Details of Proposed Quantization Noise Cancellation
Correlator out is accumulated and filtered to achieve scale factor
- Settling time chosen to be around 10 us
See analog version of this technique in Swaminathan et.al., ISSCC 2007 M.H. Perrott
73
Proposed Digital Wide BW Synthesizer
M.H. Perrott
Gated-ring-oscillator (GRO) TDC achieves low in-band noise All-digital quantization noise cancellation achieves low out-of-band noise Design goals:
- 3.6-GHz carrier, 500-kHz bandwidth -