20 Mar 1979 ... (28) studied the chemical stability of Korundal XD as compared with zirconia and
... an industrial VIM furnace, using Korundal XD bricks and.
REFRACTORIES
IN VACUUM I N D U C T I O N
MELTING
by
Eng.
A n d r e L u i z V. da C o s t a e S i l v a M e t . , I n s t i t u t o M i l i t a r de E n g e n h a r i a , B r a s i l , 1 9 7 6
A T H E S I S S U B M I T T E D IN P A R T I A L F U L F I L L M E N T OF T H E R E Q U I R E M E N T S FOR THE D E G R E E OF M A S T E R OF A P P L I E D S C I E N C E
in THE F A C U L T Y OF G R A D U A T E S T U D I E S Department of M e t a l l u r g i c a l Engineering
We a c c e p t t h i s t h e s i s a s c o n f o r m i n g to t h e r e q u i r e d s t a n d a r d
T H E U N I V E R S I T Y OF B R I T I S H March,
COLUMBIA
1979
© A n d r e * L u i z V. da C o s t a e S i l v a , 1 9 7 9
In p r e s e n t i n g
this thesis i n p a r t i a l f u l f i l m e n t o f the requirements f o r
an advanced d e g r e e a t t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a , I a g r e e t h a t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r agree that permission
f o r extensive copying o f t h i s t h e s i s
f o r s c h o l a r l y p u r p o s e s may be g r a n t e d by t h e Head o f my Department o r by h i s r e p r e s e n t a t i v e s .
I t i s understood that copying o r p u b l i c a t i o n
of t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l n o t be a l l o w e d w i t h o u t my written
permission.
Department
nf
Metallurgical
Engineering
The U n i v e r s i t y o f B r i t i s h Columbia 2075 Wesbrook P l a c e V a n c o u v e r , Canada V6T 1W5
D
a
t
e
March 20,
1979
\
ABSTRACT The
l i t e r a t u r e i n Vacuum I n d u c t i o n
reviewed, with
especial
refractory-metal
lining
superalloy
Since
i t was
with
attack
in large on
j o i n t s , t e s t s were p e r f o r m e d to c h a r a c t e r i z e
the
was
s h o w n t o be
to metal a t t a c k . diffusion
of the
less stable oxides
in the c o r r o s i o n
process.
high
i n t e r a c t i o n b e t w e e n o x y g e n and
may
be
In t h e c a s e
(SiO^,
the
content
as f l u x e s was
of the
In o r d e r
attempted.
properties
To v e r i f y t h e mechanisms observed industrial
of s t e e l s ,
of s u p e r a l l o y s ,
the e l e m e n t s p r e s e n t
The
the
fluorides
performed
of
t e s t s , samples
Vacuum F u r n a c e s were e x a m i n e d .
I t was
of very
and
concerned.
p r o p o s e d i n the
ii
of
a
adherence to b r i c k s
v a l i d i t y (on a l a r g e s c a l e )
and
the
dissolution
use
c e m e n t s so p r o d u c e d
to a t t a c k ,
were
of
the
in
to produce cements with
l o w - s t a b i l i t y oxides,
w e l l , as f a r a s r e s i s t a n c e technological
resistance
rate c o n t r o l l i n g
oxygen a c t i v i t y in the m e l t , hence e n h a n c i n g the
small
P^O^,...)
c a u s e s an e x t r e m e d e p r e s s i o n
refractory oxides.
and
standpoint.
t h a t i n the case
step
all
cement
f o r the c e m e n t s low
It i s suggested
the a l l o y ( T i , A l , Cr)
furnaces
1
the main reason
that
this attack
d e t e r m i n e the most s u i t a b l e cements from t h i s presence of l o w - s t a b i l i t y oxides
and
determined
vacuum m e l t i n g
f a i l u r e s are a s s o c i a t e d
The
is briefly
e m p h a s i s on r e f r a c t o r y p r a c t i c e s
interactions.
i n b o t h s t e e l and
Melting
the from
concluded
t h a t t h e p r o c e s s e s . o c c u r r i n g i n a 1 a r g e f u r n a c e c a n be i z e d based on t h e n e e d
on t h e t e s t o b s e r v a t i o n s . f o r improved
rational-
A l s o c o m m e n t s w e r e made
pouring f a c i l i t i e s ,
i f the
products
o f t h e m e t a l - r e f r a c t o r y i n t e r a c t i o n a r e t o be k e p t o u t o f final
material produced.
This i s because
i n the
present
s t a t e o f the r e f r a c t o r y t e c h n o l o g y and p r a c t i c e , t h e s e actions
cannot
be
avoided.
the
inter-
T A B L E OF C O N T E N T S Page Abstract Table
i i
of Contents
List
of Tables
List
of Figures
iv vi vii
Acknowledgements
'
x
CHAPTER 1. I N T R O D U C T I O N
1
1.1 I n t r o d u c t i on
1
1.2 L i t e r a t u r e S u r v e y 1.2.1 Meta1 - R e f r a c t o r y Interactions Under Vacuum 1. 2 . 1 . 1 V a p o r i z a t i on 1.2.1.2 D i s s o l u t i o n o f R e f r a c t o r i e s 1.2.1.3 R e a c t i o n w i t h A l l o y i n g E l e m e n t s 1.2.1.3.1 Carbon 1.2.1.3.2 O t h e r A l l o y i n g E l e m e n t s 1.2.1.4 E f f e c t o f M i n o r Components 1.2.1.5 K i n e t i c A s p e c t s 1.2.2 R e f r a c t o r y P r a c t i c e i n V I M 1.2.3 O t h e r R e a c t i o n s W i t h t h e L i n i n g
4
10 12 14 20
1.3 O b j e c t i v e s
24
o f the Research Project
4 4 4 5
2. E X P E R I M E N T A L
25
3. R E S U L T S
29
3.1 T e s t s U s i n g A I S I 1 0 9 5 S t e e l 3.1.1 M u l l i t e B a s e d Cement 3.1.2 C e m e n t s W i t h 1 0 % S i l i c a iv
29 29 31
Page 3.1.3 3.1.4 3.1.5 3.1.6 3.2
Cements Produced Using F l u o r i d e s Low S i l i c a P h o s p h a t e B o n d e d C e m e n t S i l i c a C o n t a i n i n g Phosphate Bonded Cement Summary o f S t e e l T e s t s
Tests Using
4. O B S E R V A T I O N OF
X-750 S u p e r a l l o y
42
INDUSTRIAL SAMPLES
50
4.1 4.2
S l a g From D e s u l p h u r i z a t i o n T r e a t m e n t Magnel B r i c k 4.2.1 M a c r o s c o p i c O b s e r v a t i o n 4.2.2 M i c r o s c o p i c O b s e r v a t i o n 4.3 I n c l u s i o n s i n N i - B a s e d S u p e r a l l o y 4.4 P i e c e o f Rammed L i n i n g 4.4.1 M a c r o s c o p i c O b s e r v a t i o n 4.4.2
Microscopic
5. C O N C L U S I O N S AND
32 36 38 40
50 52 52 52 56 58 58
Observation
58
RECOMMENDATIONS
61
BIBLIOGRAPHY
67
v
L I S T OF
TABLES Page
1. 2. 3.
S o l u b i l i t y product of various oxides in Iron and N i c k e l
121
P r e s s u r e s o f CO i n e q u i l i b r i u m w i t h d i f f e r e n t o x i d e s and s t e e l melts
121
Nominal composition
o f some
Vacuum
Melted Superalloys
122
4.
Refractory Practices
123
5.
Composition
of metals
6.
Composition
of Refractories tested
7.
O x y g e n c o n t e n t o f X - 7 5 0 a f t e r 15 m i n . h o l d i n g time i n d i f f e r e n t c r u c i b l e s
used
vi
i n the t e s t s
129 130 13:1
L I S T OF F I G U R E S 1.
Theoretical
2.
Deoxidation curves
3.
Dimensions
4.
Different wetting behaviours
77
5.
Experimental Apparatus
78
6.
V a r i a t i o n i n carbon c o n t e n t o f AISI melted i n Tasil-X crucibles
7.
Interface
8. 9. 10.
deoxidation
Page 74
diagram
75
o f the crucibles
AISI
used i n the t e s t s
1095 s t e e l 79
1095/Tasil-X
80
Microstructure
of Taylor
81
Interface
1 0 9 5 / A l u n d u m 1162
AISI
Typical microstructure A 1 0 and CaF (CAF) 2
3
320
82
o f a c e m e n t made
from 83
2
11.
Adherence test.
12.
V a r i a t i o n i n carbon c o n t e n t o f AISI m e l t e d i n CAF c r u c i b l e s
1095 s t e e l
V a r i a t i o n i n carbon c o n t e n t o f AISI m e l t e d i n Alundum 1139 c r u c i b l e s
1095 s t e e l
13. 14.
Interface
Typical microstructure A l 0 a n d MgF,, ( S P 2 ) 2
15.
76
Magnel/CAF
84 85 86
o f a c e m e n t made
from 87
3
V a r i a t i o n i n carbon c o n t e n t o f AISI m e l t e d i n SP2 c r u c i b l e s
16.
Adherence t e s t .
17.
V a r i a t i o n i n carbon c o n t e n t o f AISI m e l t e d i n T a y l o r 341 c r u c i b l e s AISI
Interface
1095 s t e e l 88
Magnel/SP2.
89
1095 s t e e l 90
18.
Interface
1 0 9 5 / T a y l o r 341
91
19.
V a r i a t i o n i n c a r b o n c o n t e n t o f AISI 1095 s t e e l m e l t e d i n C o r a l b o n d and T a s i l - X c r u c i b l e s as a f u n c t i o n o f th vii
92
Page 20.
Interface
AISI
1095/Cora1 bond
21.
Detail of altered Coralbond
22.
Alumina
i n c l u s i o n s from
Interface
AISI
93 94
Coralbond.
1095/Coralbond
23.
Equilibrium
24.
Interface
X-750/Magnel
25.
Interface
X-750/Magnel , metal
26.
Deoxidation
27. 28.
D e n s e l a y e r f o r m e d a t i n t e r f a c e X - 7 5 0 / T a y l o r 341 M i c r o s t r u c t u r e of s l a g from d e s u l p h u r i z a t i o n treatment
101
Microstructure treatment
102
29.
A1 0
95
2
3
= 2A_1 + 30 i n N i c k e l
equilibria
97
of s l a g from
Used Magnel
31.
Cross section of working Magnel b r i c k
33.
34.
98 99
Metal penetration Ca1cium-Aluminate and Z i r c o n i u m
103 face
of 104 brick 105
i n Magnel b r i c k . containing Titanium
Detail of a periclase grain
' in
brick
107
P e r i c l a s e g r a i n i n used Magnel
36.
C a l c i u m - A l u m i n a t e s on t h e w o r k i n g
brick
108
face
of Magnel l a y e r on t h e w o r k i n g
106
unused
35.
109
37.
Spinel
38.
Macroinc1 usions in p a r t i a l l y forged Ni-base superalloy Microstructure of Calcium-Aluminate i n c l u s i o n i n F i g . 38 vi i i
39.
100
desulphurization
brick
Metal p e n e t r a t i o n i n Magnel via Ca1cium-Aluminates
Magnel
removed
i n a N i - 1 % A1 a l l o y
30.
32.
96
f a c e o f Magnel
110 111 112
Page 40.
Microstructure partially
of spinel inclusion in
forged Ni-base alloy
41.
Piece
42.
Typical microstructure
113
o f u s e d rammed l i n i n g o f t h e rammed
114 lining,
60mm f r o m t h e w o r k i n g f a c e
115
43.
Cross-section
116
44.
Inclusions
45.
A l t e r e d r a m m e d l i n i n g 5mm f r o m t h e w o r k i n g face U n a l t e r e d MgO g r a i n c l o s e t o t h e w o r k i n g f a c e o f t h e rammed l i n i n g
46.
of working
f a c e o f rammed l i n i n g
f r o m rammed l i n i n g
ix
117 118 119
ACKNOWLEDGEMENTS The
author
would l i k e to express
Dr. A l e c M i t c h e l l , f o r h i s h e l p and course
of t h i s work.
colleagues
i n the
Much a p p r e c i a t i o n with
The
is given
fellow students
and
of several
f o r t h e i r h e l p f u l c r i t i c i s m of the
his
discussions
f a c u l t y members. Chacklader
of
the
gratifying.
f o r t h e many h e l p f u l
other
to
throughout
been extremely
w o u l d a l s o l i k e t o t h a n k Dr. A . C D . Ballantyne,
guidance
cooperation
i n d u s t r y has
his gratitude
The and
Dr.
author A.S.
d r a f t manu-
script. The A g e n c y and
support
of the Canadian
o f t h e M i n i s t e r i o da
International
Development
I n d u s t r i a e Come'rcio,
Brasil,
are g r a t e f u l l y acknowledged. Special for t h e i r support
t h a n k s a r e due during
to E l e c t r o m e t a l
this project.
x
Acos f i n o s
S.A.,
1
CHAPTER 1 INTRODUCTION 1. 1
Introduction With the
for
the a e r o s p a c e ,
industries, important now
i n c r e a s i n g demand f o r h i g h q u a l i t y m a t e r i a l s n u c l e a r and
Vacuum I n d u c t i o n
Melting
p o s i t i o n a s an a l l o y - m a k i n g
well understood
it i s very process
other highly sophisticated
likely
contamination
has
reached
process.
Due
and c o n t r o l l e d t e c h n o l o g i c a l that i t will
f o r some c o n s i d e r a b l e The
(VIM)
time
much l e s s c o n t a m i n a t i n g
one
than
i n t o the
advantages primary
future.
a t m o s p h e r e as a s o u r c e
and even a m e d i o c r e
a very pure
gas.
of
vacuum i s
One
must
aware, however, of the e f f e c t s of the v a r i o u s p r e s s u r e tive
very
to i t s
k e e p i t s p o s i t i o n as a
idea of removing the i s n o t a new
a
be sensi-
r e a c t i o n s o c c u r r i n g in s t e e l or high-temperature
alloy-
making. Induction
heating i s , without
q u e s t i o n , one
of
the
c l e a n e s t and e a s i e s t t o c o n t r o l h e a t i n g methods a v a i l a b l e , offering
"con t a c t l e s s " h e a t i n g w i t h
t u r e c o n t r o l and reduced
o r no p r o b l e m
of
in operating
tempera-
under
pressures. S i n c e we
for
little
a high degree
very expensive
are d e a l i n g with
a primary
melting
alloys, i t is clear that a
process
continuous
2
process i s not f e a s i b l e . bringing
Batch o p e r a t i o n i s then
i n t o the s i t u a t i o n
the need
necessary,
for a container.
c o n t a i n e r s h o u l d be a b l e t o r e s i s t t h e t e m p e r a t u r e s molten
metals
and,
within
a reasonable
This
of
the
a t t h e same t i m e , k e e p t h e h e a t l o s s e s level.
It is also clear that
the
c o n t a i n e r s h o u l d i n t e r a c t to the minimum e x t e n t p o s s i b l e w i t h the m e t a l .
Although
t h e two
first
d e m a n d s a r e f u l f i l l e d by
s e r i e s o f c o n v e n t i o n a l r e f r a c t o r y m a t e r i a l s , the l a s t poses
the b i g g e s t d i f f i c u l t y ,
Even refractories
to
though
are u s u a l l y
utilize.
non-oxide
f o r VIM
m a t e r i a l s have been
used
as
f u r n a c e s , most o f the p o t e n t i a l c a n d i -
dates amongst these m a t e r i a l s f i n d severe economic What i s t h e n s e e n
one
r e d u c i n g the number of p o s s i b l e
a t e r n a t i v e s to a handful of m a t e r i a l s which expensive and.hard
a
limitation.
i s t h e e x t e n s i v e use o f o x i d e s o r
mixtures
o f o x i d e s i n t h e f o r m o f p r e f i r e d , o r rammed i n p l a c e , o r brick/cement
lining
ature Nickel-based
as c o n t a i n e r s f o r s t e e l s a n d h i g h alloys.
To a g g r a v a t e
the chemical
o f t h e a l l o y s made by VIM reactive
alloying
interaction
contain relatively
a t l o w e r p r e s s u r e s due +
problem,
most
l a r g e amounts
a d d i t i v e s s u c h as T i , A l , e t c . , o r , i n
case of s t e e l , carbon, the l a t t e r becoming
•C
temper-
0
=
of
the
much m o r e r e a c t i v e
to the e f f e c t of r e a c t i o n CO
(g) .
In a d d i t i o n , h i g h q u a l i t y m a t e r i a l s r e q u i r e h i g h heat-to-heat reproducibility ability
i n p r o p e r t i e s , maximum
( s i n c e they a r e , per se, hard to work) and,
hot-workin
the
3
case of h e a t - r e s i s t i n g All
alloys, excellent
these c h a r a c t e r i s t i c s are influenced
element contamination from r e f r a c t o r y
no d i s s o l u t i o n ) a refractory.
achieved. extent
Recognition part
i f the best
Refractories
stability
(no
desired in
i n the r e f i n i n g process
becomes
vacuum m e l t i n g
i s t o be
practice
be a t t a c k e d
processed
thoroughly
r e f r a c t o r y / a 11oy
reaction-
t h a t t h e r e f r a c t o r i e s a r e one o f
should
by t h e a l l o y s b e i n g
best
trace
products
as one o f t h e p a r a m o u n t p r o p e r t i e s
unavoidable reaction the
g r e a t l y by
interaction.
components taking
then e s s e n t i a l
properties.
and i n c l u s i o n s , both l i k e l y
In V I M , o n e t h e n s e e s c h e m i c a l
the
creep
t o a minimum
and t h e p r o d u c t o f any
defined
combinations.
i n order
to
achieve
1.2
Literature 1.2.1
Survey
Metal-Refractory 1.2.1.1
Although definite
secondary
Under
Vacuum
V a p o r i z a t i on
vaporization
possibility
extensively
Interactions
of r e f r a c t o r y
(1), this
i n the p r e s e n t
importance,
problem w i l l
study
since
i t is
oxides
is a
n o t be d e a l t w i t h likely
compared t o d i r e c t c h e m i c a l
t o be o f
a t t a c k by
the m e l t . 1.2.1.2
Dissolution
The s i m p l e s t
process
that
oxide
which
X and oxygen a r e s o l u b l e
the
in contact with
of
a metal Y, in
to a certain extent,
is
AG,
(1)
dissolution XO = X This
and,
Refractories
can o c c u r when a p i e c e
refractory both
XO i s b r o u g h t
of
given
given
+ 0
i n Y
i n Y
reaction w i l l
occur at the m e t a l - o x i d e
s u f f i c i e n t time, achieve
the s o l u b i l i t y
interface limit
by t h e p r o d u c t h
When-h
and h
- .
x o
and a
x Q
A
Q
e-".>"
(2)
a r e t h e a c t i v i t i e s o f X, fj and XO,
respectively. Table of oxides most
1 presents
in iron
a t 1600°C
of the d i s s o l u t i o n
pressure
sensitive,
thermodynamics
the s o l u b i l i t y p r o d u c t s and a t m o s p h e r i c
processes
pressure.
l i s t e d in Table
one can use them a g u i d e l i n e s
o f the d i s s o l u t i o n
process.
for a series Since
1 are not f o r the
5 S h o u l d X be h i g h l y v o l a t i l e a n d i n s o l u b l e ( o r a l m o s t ) , s u c h as Mg o r Ca i n i r o n , t h e d i s s o l u t i o n w i l l saturation
of the bath w i t h oxygen
f o r m a t i o n o f a FeO at
s l a g , due
the metal/vacuum MgO
(5).
proceed
This will
to
l e a d to the
t o t h e e v a p o r a t i o n o f Mg
(or
Ca)
i n t e r f a c e , d i s p l a c i n g the r e a c t i o n
= Mg + 0
by t h e c o n s t a n t r e m o v a l
o f one
o f the p r o d u c t s .
be o b s e r v e d , h o w e v e r , w h e n t h e p r o c e s s k i n e t i c s
T h i s may are
not
very
sluggish. All they w i l l
these p r o c e s s e s are o b v i o u s l y u n d e s i r a b l e s i n c e
i n t r o d u c e an u n a c c o u n t e d
a l l o y i n g element
o x i d i z e the b a t h , most p r o b a b l y c o m p r o m i s i n g of the r e s u l t i n g
Reaction With A l l o y i n g 1.2.1.3.1
elements
above
are p r e s e n t .
has been
a steady decrease
Elements
Carbon
p i c t u r e changes,
most i m p o r t a n t e l e m e n t confusion
the p r o p e r t i e s
alloy.
1.2.1.3
The
and
h o w e v e r , when
alloying
In t h e c a s e o f s t e e l s , c a r b o n
i s the
i n VIM
most
generated. in carbon
and t h e one
over which
Although a l l authors
c o n t e n t o f t h e a l l o y , as
observe the
r e a c t i on XO +
C
= CO + X
p r o c e e d s , a g r e a t d e a l o f m i s u n d e r s t a n d i n g has been about
by f a i l i n g t o a c k n o w l e d g e
the k i n e t i c a s p e c t s of the
p r o c e s s and t r y i n g to compare r e s u l t s different initial
carbon
brought
contents.
from s t e e l s with
The e x p e r i m e n t s
by
widely Bennett
6 e t a l . ( 6 ) , who s t a r t e d h i s t e s t s w i t h a ' 0 . 2 % C s t e e l crucible
a n d o b s e r v e d r e a c t i o n t i m e s o f up t o 85
showed the achievement about
8 ppm.
o f a c l e a r minimum
This i s in obvious
steel
c o n t e n t , somewhere
10 ppm.
has b e e n - f o u n d " ,
( 7 ) , who
minimum
Although Oberg
p o i n t o u t t h a t "no w o r k c o v e r i n g a w i d e r r a n g e concentration
level, of
c o n f l i c t as t h e a u t h o r s
and o b s e r v e d a peaked above
minutes,
oxygen
p o i n t o u t , w i t h t h e p r e v i o u s r e s u l t s o f Moore w i t h a 0.1%C
i n a MgO
started
i n the
et al.(8)
o f carbon
the k i n e t i c study o f Machlin
( 9 ) h a s s h o w n w h a t s h o u l d be e x p e c t e d i n s u c h a c a s e . s t a r t s with a high carbon
oxygen
I f one
a c t i v i t y melt, the d i s s o l u t i o n
step
MgO = Mg. + 0 and t h e d e o x i d a t i o n s t e p C + 0 = CO will
define a kinetic equilibrium fixing
oxygen
level
in the bath.
As t h e c a r b o n
during this p e r i o d , the steep ascendent equilibrium hyperbole will the " f r e e oxygen
a steady-state c o n t e n t goes
down
s i d e o f t h e C/0
be r e a c h e d a n d w h a t O b e r g
uptake" w i l l
prevail.
T h i s whole
called
p r o c e s s can
be d e s c r i b e d b y a c u r v e a s F i g . 1, w h e r e o n e o b s e r v e s an : initial oxygen
d e o x i d a t i o n , then a s t e a d y - s t a t e and f i n a l l y a c o n t e n t i n c r e a s e , due t o t h e l a c k o f s u f f i c i e n t
flushing.
I t i s easy t o u n d e r s t a n d t h a t what Moore
a c t u a l l y , was j u s t
an o v e r l a p p i n g o f b o t h
p r o c e s s e s , d u e t o an i n j u d i c i o u s s e l e c t i o n
fast CO
observed,
unsteady-state of carbon
content.
7
The
understanding
paramount importance
f o r the o p e r a t i o n
it will
permit
the best
content
t o be
reached.
Since s t a t e and o f the
of t h i s process
deoxidation
o f VIM
and
consumption
furnaces,
since
the minimum i n c l u s i o n
the minimum oxygen c o n t e n t
the carbon
i s c l e a r l y of
a t t a i n e d at
rate are both
steady-
direct
functions
dissociation reaction XO - X + 0
it is evident criteria in
that those
two
conditions will
be
for assessment of r e f r a c t o r y s t a b i l i t y
adequate and
adequacy
VIM. Schaffer
dynamics of the With e x t e n s i v e bath, the
(10)
and
various
others
have c a l c u l a t e d the
melt-refractory
s i m p l i f i c a t i o n s he
c o n t a i n i n g 0.4%C
reactions
found
thermo-
possible.
t h a t , f o r an
the e q u i l i b r i u m pressures
iron
o f CO
for
reaction X0 + C = CO + X
w o u l d be as g i v e n usual
operating
expect
the from
take
in account
prevail there
pressures
reduction
able
2.
in Table
As t h e y
o f VIM
of the
furnaces
only
(80y),
f a c t that these
H o w e v e r one re 1 a t i o n s h i p s
the
should favour-
should
also
shou1d
f o r the m e t a l - c r u c i b l e - v a c u u m i n t e r f a c e , where
i s no n u c l e a t i o n
b a r r i e r f o r CO
formation.
d e e p e r i n t h e me 1 1 - c r u c i b l e i n t e r f a c e , t h e C/0 t i on m u s t be s u f f i c i e n t t o o v e r c o m e t h e the s u r f a c e
one
r e f r a c t o r i e s t o be h i g h l y
a thermodynamic viewpoint. the
are a l l w e l l over
forces
(CO
n u c l e a t i n g then
As o n e
goes
supersatura-
f e r r o s t a t i c head as b u b b l e s )
and
otherwise
8
the a t t a c k has to proceed
as d i s s o l u t i o n o f the o x i d e ,
( e n h a n c e d b y t h e l o w fJ c o n t e n t of 0 through
the bath
of a C rich bath),
a n d CO f o r m a t i o n
transport
and d e s o r p t i o n
at the
s urface . Turillon
(11) and o t h e r s
tion of iron melts and
recognized
reaction. F i g . 2.
have s t u d i e d t h e d e o x i d a -
under Vacuum I n d u c t i o n
the importance
He o b s e r v e d
Melting
of the r e f r a c t o r y
the behaviour
conditions decomposition
p r e d i c t e d by M a c h l i n , i n
T u r i l l o n also noticed that, i n h i s MgO/spinel
c r u c i b l e s , a t t h e p o i n t o f m i n i m u m C^ a n d 0_ c o n c e n t r a t i o n preceding
the " f r e e oxygen uptake", the d e o x i d a t i o n
refractory decomposition
rates, determined
were e q u a l , w i t h a value
of approximately
and t h e
independently, 1.5 ppm 0 / m i n .
A c o n s i d e r a b l e n u m b e r o f s t u d i e s h a v e a l s o b e e n made taking i n account
the carbon
boil
conditions, i.e., critical
crevice sizes f o r nucleation of bubbles, needed, e t c . Besides
the conventional
supersaturation treatment
o f Darken
( 1 2 ) , K r a u s ( 1 3 ) h a s c a l c u l a t e d t h e c h a r a c t e r i s t i c s o f CO bubbles
i n vacuum carbon
deoxidation.
He p r e s e n t e d
bubble
c h a r a c t e r i s t i c s g r a p h i c s , s h o w i n g t h e maximum a c t i v e d e p t h bubbling,
of
t h e minimum s u p e r s a t u r a t i o n needed f o r b u b b l e
n u c l e a t i o n , a n d t h e e f f e c t o f s e v e r a l o t h e r v a r i a b l e s on t h e degassing
processes.
He p o i n t e d o u t t h a t , i f t h e n u c l e a t i o n
frequency
as a f u n c t i o n o f p r e s s u r e
known, t h e r a t e o f d e g a s s i n g mined.
Unfortunately,
during
and c o n c e n t r a t i o n the boil
was
c o u l d be d e t e r -
as Kinsman e t a l . (14) p o i n t o u t , t h i s
knowledge i s not a v a i l a b l e and should
d e p e n d on s e v e r a l
hard
9 c h a r a c t e r i z e f a c t o r s such as a g i t a t i o n of the b a t h , c h a r a c t e r i s t i c s of the c r u c i b l e , presence
of
surface
heterogeneous
nuclei, etc. It boil
i s important
i s the major
substantial
to keep i n mind, t h a t , a l t h o u g h
CO e l i m i n a t i o n p r o c e s s , o n c e
oxygen
removal
still
the
i t subsides,
h a p p e n s by s u r f a c e
desorp-
tion. 1.2.1.3.2 Precipitation basically
Other Al l o y i n g
hardening nieke 1-based
on a l u m i n i u m - ,
and
achieve t h e i r high temperature uncommon t o f i n d a l l o y s w i t h
Elements alloys
rely
t i t an i u r n - r i ch p r e c i p i t a t e s t o strength (15). up t o 4 - 5 %
I t i s not
Ti+Al
(Table 3).
A
will
show t h a t
both
\
b r i e f l o o k a t an o x i d e s t a b i 1 i t y A1^0^
and TiOg
a r e among t h e most s t a b l e o x i d e s .
elements
will
Although
vacuum w i l l
present then, r e a c t i v i t y problems
tions, i t is still main d r i v i n g
n o t l i k e l y p l a y any
important
Zr,
of ceramics
( 1 6 , 17,
18)
role in these
reac-
of the
i s the p o s s i b i l i t y
of
have s t u d i e d the
by N i c k e l a l l o y s .
rapid wetting of refractories
Al , T i and
with crucibles.
rich in reactive elements.
Various authors
observed
These
t o s t u d y t h e m s i n c e one
f o r c e s f o r t h e u s e o f VIM
producing alloys
wettability
diagram
C, a n d
Sutton
(19)
by a l l o y s c o n t a i n i n g
found t h a t w e t t i n g i n c r e a s e d with
content of the a l l o y i n g a d d i t i o n .
Snape (20) o b s e r v e d
t h e w e t t a b i l i t y o r d e r o f v a r i o u s a l l o y s i s t h e same i n ent r e f r a c t o r i e s s u b s t r a t e s . wetting of alumina
He
the that differ-
a l s o n o t i c e d the i n c r e a s e d
c r u c i b l e s by r e a c t i v e a 1 1 o y i n g
elements
in
10 a l a r g e number o f commercial nieke 1 -carbon
high temperature
and
alloys.
The p r o c e s s i n q u e s t i o n , f o r a N i - T i Alumina
alloys
c r u c i b l e , would
a l l o y in a pure
be d e s c r i b e d by
f-T_i + A l „ 0 _ = J-Ti0 . 9
t.
+ 2AJ_ A1 0 2
3
It i s c l e a r t h a t the aluminum
content of the bath
play a r o l e i n the e q u i l i b r i u m . S u t t o n found s t r o n g in w e t t a b i l i t y dissolution
depending
o f the Ti0£
activity will
on t h e T i / A l formed
r a t i o i n the a l l o y .
made by S n a p e ,
K a m a m u r a e t a l . ( 2 2 ) who
An e x t e n s i v e s t u d y
G u p t a e t a 1. ( 2 1 )
noted the a l t e r a t i o n
r e f r a c t o r y s u b s u r f a c e l a y e r s and e n r i c h m e n t s
E f f e c t of Minor
use o f pure s i l i c a
contact with either steel
and
s u f f e r e d by in Cr, Ti
the
and
Components
refractories
o r n i e k e 1-a 1 1 o y s
r u l e d o u t due t o t h e low s t a b i l i t y
under vacuum i n s h o u l d be
vast number o f commercial
clearly
of SiO^ in presence of C
a t low p r e s s u r e s , o r o f A l , T i a l l o y i n g e l e m e n t s . refractories
in which
an i m p o r t a n t r o l e as a b i n d i n g a g e n t - - s u c h
tion
of
elements.
1.2.1.4
aluminous
The
i n t h e c r u c i b l e and i t s f i n a l
i n c r e a s i n g the e r o s i o n .
t h o s e r e a c t i o n s was
The
variations
be i m p o r t a n t i n t h i s p r o c e s s - - a l a r g e s o l u b i l i t y
in the c r u c i b l e
other alloying
will
But,
silica
as m u l l i t e ,
the plays silico-
and h i g h - a 1 u m i n a - - h a s p r e c l u d e d i t s c o m p l e t e e l i m i n a -
from the vacuum i n d u c t i o n m e l t i n g scene.
o f s i l i c a and i t s p r e s e n c e i n most ores pose
The
abundance
economical
11 problems in making r e f r a c t o r i e s with Fe^Og i s a l s o o f t e n p r e s e n t
very
as i m p u r i t y
l o w - s i l i c a content.
(23), i t s removal
b e i n g e c o n omi c a l l y un f e a s i b l e . The increased
work o f Graham e t a l . ( 2 4 ) i n t e r a c t i o n t o be e x p e c t e d
shows c l e a r l y the as t h e
silica
content
of
s i ' l i c o - a , l umi n o u s r e f r a c t o r i e s i s i n c r e a s e d .
Machlin
estimated
a 10
content
of a
fold
steel
increase
melted
Hoffmann.
in the steady-state
i n a 1% S i 0 ^ - M g O c r u c i b l e , u s e d Although
some s u g g e s t
able to consume the s i l i c a silica
reduction
t o r y , one
oxygen
t o be
possible decrease
in the working
the
Fisher
t h a t a wash heat
c o n t r o l l e d by
must c o n s i d e r
by
should
i n p o r o s i t y and
i n s t r e n g t h • a-ssoci ated'Wi th the
Most l i k e l y ,
wetted
altered layer will
s p a l l when t h e
residual
(23)
dissolved in
next
heat,
as t h e
explanation reducing
(25)
who
observed
a i r d r i e d a t 2 2 5 ° C and
same c a r b o n
consumption
then
wash-heat.
and
gases
i n r e f r a c t o r i e s can
in
alloys.
They t h e r e f o r e
the
better
crucibles is
given
vacuum d r i e d produced
the
s t e e l as a c r u c i b l e
This would i n d i c a t e that absorbed
Snape a l s o r e p o r t e d content
be m a j o r s o u r c e s
of
purposes
at
( c r u c i b l e s o f 206
i n c r e a s e d w e t t a b i l i t y due
(although
water
oxidation
r e c o m m e n d e d an a i r d r y i n g
h. f o r r e s e a r c h
increased silica
metal,
that a c r u c i b l e which
i n the molten
a f t e r one
1 2 5 0 ° C f o r 24
A much
this
favorable e f f e c t s of a "wash-heat" in
" p o l l u t i o n " p o t e n t i a l of the
by H u n t e r & T a r b y was
b i n d i n g phase i s absent.
f o r the
the
a n d / o r be
refrac-
corrosion
intergranu1 ar s i 1 i c o - a l u m i n a t e s .
solidifies
the
the
of the
a f t e r teeming,
be
face, causing
d i f f u s i o n i n the
increase
and
cm
to
some i n c r e a s e i n p o r o s i t y
).
12 was
also
experimented). As b o r o n
oxide
o t h e r o x i d e s , i t has a d d i t i on s - - a s
refractories
ties.
and
several
of b o r i c a c i d
bonds f o r v a r i o u s a p p l i c a t i o n s .
et a l . ( 2 6 ) showed, a l l o y s produced
c o n t a i n i n g 1.2%
B
2^3
in
cannot
which
hot w o r k a b i l i t y
In t h e c a s e o f h i g h q u a l i t y m a t e r i a l s i n w h i c h i s mandatory, the d i f f e r e n t l e v e l s of
t i o n s d u r i n g the l i f e
properrepro-
contamina-
o f t h e c r u c i b l e r e p o r t e d by D e c k e r
be t o l e r a t e d .
As W i n k l e r
(23) o b s e r v e s ,
stability
are used
during the manufacture
et
wetting
and e r o s i o n o f t h e c r u c i b l e a r e p r o m o t e d i f b i n d e r s o f chemical
MgO
c o n t a i n e d some b o r o n ,
f o r v a r i a t i o n s i n c r e e p and
ducibility
al.
f l u x t o MgO
been u s e d - - i n the form
chemical
H o w e v e r as D e c k e r
accounted
i s a powerful
of
lower the
c r u c i b l e , as t h e y a r e p r e f e r e n t i a l l y d e c o m p o s e d . 1.2.1.5 Although e x t e n s i v e and observed. mental
K i n e t i c Aspects
the thermodynamic p r e d i c t i o n s
v i o l e n t c o r r o s i o n , t h a t i s not what i s u s u a l l y
In a d d i t i o n , d i s c r e p a n c y
r e s u l t s from
accounted
d i f f e r e n t authors
It i s important
and
i s found between e x p e r i which
cannot
f o r s i m p l y by d i f f e r e n t e x p e r i m e n t a l
open and
be
techniques.
to keep i n mind t h a t f a c t o r s such
closed p o r o s i t y , mechanical
s i z e d i s t r i b u t i o n , temperature
agitation
suggest
r e s i s t a n ce , g r a i n s i z e of the t e s t , degree
(frequency of current, size of furnace, etc.)
play a definite
role in determining
the v a r i o u s r e f r a c t o r i e s .
as
of will
the r e a c t i o n k i n e t i c s f o r
13
Turillon
(27)
noticed
minimum oxygen c o n t e n t f u s e d MgO
they
mechanical transport
latter
resistance.
Machlin
can
lower thermal
assumed the
c o n t r o l l e d a t the c r u c i b l e / m e t a l
to pose l i m i t a t i o n s to the p r o c e s s .
i.e., depletion
a t the
c e r t a i n l y be e x p e c t e d
differential
influence
main
hardly
ing
place
by d i s c r e t e p i e c e s
is
most
variations the
mass
interface.
of
by
refractory
Once a p i e c e that i t will
The
i t s much i n c r e a s e d
area.
higher
the
obvious
phenomena,
helping
the
frequency,
hence, less erosion
o f r e f r a c t o r y has be
from i t s
rate of transport
of bond s o f t e n i n g , again
of refractory grains.
likely
It
bath.
in i n c r e a s i n g the
expected.
it
stabilities.
a p p e a r as e f f e c t s on
t h e a g i t a t i o n o f t h e m e l t and
very
occur,
t o be t r u e w h e n t h e r e
e f f e c t of temperature, apart
a l s o be one
be
metal/vacuum
as S n a p e o b s e r v e d , much o f t h e o x y g e n i n t a k e
The
will
to
phase i s the
corroded
t r a n s f e r c o e f f i c i e n t at the m e t a l / c r u c i b l e
i n t o the
and
may
interface will
not
in c r u c i b l e p a r a m e t e r s w i l l
falling
shock
Although this
reaction of phases of various
the metal takes
or
results,
reaction and
i s c l e a r t h a t f o r the purpose of m o d e l l i n g ,
Besides,
the
r e a c t i o n i t s e l f proceeded f a s t enough
be s o f o r c r u c i b l e s i n w h i c h t h e one,
in
g i v i n g the b e t t e r
have, unfortunately,
i n t e r f a c e s , i . e . , the not
differences
a t t a i n a b l e w h e n u s i n g r a m m e d MgO
c r u c i b l e s , the
although
sharp
loosenthe
i s to
lower be
been e r o d e d i t i s
d i s s o l v e d a t a f a s t r a t e due
to
14 1.2.2
R e f r a c t o r y P r a c t i c e i n VIM
Besides
the c l e a r importance
of the thermodynamic
s t a b i l i t y o f t h e l i n i n g m a t e r i a l , we h a v e s e e n actual
s t r u c t u r e o f the r e f r a c t o r y w i l l
in the k i n e t i c s o f the a t t a c k process.
that the
play a definite
role
I t i s then i n s t r u c t -
ive to study the d i f f e r e n t r e f r a c t o r y p r a c t i c e s applied i n VIM,
comparing Table
t h e i r advantages 4 presents
and drawbacks.
various p r a c t i c e s quoted
l i t e r a t u r e a n d t h e f o l l o w i n g c a n be Laboratory
furnaces
in the
observed.
and s m a l l f u r n a c e s
up t o a b o u t
25kg c a p a c i t y u s u a l l y employ p r e f i r e d c r u c i b l e s .
Although
i t w o u l d be p o s s i b l e t o u s e r a m m e d l i n i n g s , t h e l a b o u r
costs
a r e p r o h i b i t i v e . As t h e f u r n a c e s i z e i n c r e a s e s t h e l i m i t f o r prefired
c r u c i b l e s i s reached
l i n i n g becoming more e c o n o m i c a l
a t about
2 5 0 k g , t h e rammed
as t h i s v a l u e i s
approached
(51). F o r i r o n and n i c k e l m e l t i n g p u r p o s e s , r e l i e s on h i g h p u r i t y MgO (96%A1 0 , 2%Si0 ) 2
3
2
one u s u a l l y
(96%MgO, 2%Si 0 , l % F e 0 ) 2
(51), although
z i r c o n i a c r u c i b l e s c a n a l s o be
2
Mg0.Al 0 2
3
3
or A1 0 2
3
or stabilized
used.
As C h i l d e t a l . ( 5 1 ) p o i n t s o u t , h o w e v e r , p r e f i r e d crucibles are not considered f o r industrial to the high p r i c e and s h o r t l i f e s . more dangerous wide and cause
than
a p p l i c a t i o n s , due
B e s i d e s , c r a c k s a r e much
i n rammed c r u c i b l e s , s i n c e t h e y
can open
leakage.
Ramming m i x t u r e s
f o r Induction
by a n u m b e r o f m a n u f a c t u r e r s . h o w e v e r , when e x t e n d i n g
Care
Furnaces
are
produced
s h o u l d be e x e r c i s e d ,
t h e i r use t o Vacuum I n d u c t i o n
Melting.
15 High s i l i c a tion
linings
f o r i n s t a n c e , q u i t e common i n A i r
f u r n a c e s , m u s t be b a n n e d i f t h e b e s t r e f r a c t o r y p r a c t i c e
i s t o be a c h i e v e d .
The
Fe^O^
c o n t e n t m u s t a l s o be k e p t
a l t h o u g h i t i s an e x c e l l e n t a d d i t i v e t o p r o m o t e MgO due
Induc-
to i t s f 1 u x i n g a b i 1 i t y .
present
a
Winkler
(15) p r e f e r s to s e t the upper
low o x y g e n
l / U F ^ O ^ . MgO
Although
Child et a l .
c r u c i b l e as a t y p i c a l
low,
sintering, (51)
VIM m a t e r i a l ,
l i m i t at 0.5%Fe202> i f
l e v e l s a r e t o be a t t a i n e d .
Ramming m i x t u r e s
c a n be e i t h e r w e t
ramming b e i n g made, i n both
o r d r y rammed,
cases, using a metal
the
p l a t e mould
or a s i m i l a r k i n d o f c o r e . The
ideal
g o a l i n p r o d u c i n g a rammed l i n i n g
some 3 0 % o f t h e t h i c k n e s s f u l l y at the working
low p o r o s i t y
f a c e - - t h e r e s t o f t h e l i n i n g s h o u l d be
i n g l y s i n t e r e d and hence date thermal
s i n t e r e d , with
i s to have
more p o r o u s
and m e c h a n i c a l
decreas-
and more a b l e t o accommo-
stresses.
This less sintered
l a y e r a c t s as a c u s h i o n , h o l d i n g t h e h a r d s i n t e r e d " c r u c i b l e " in place.
T o a c h i e v e t h i s , s e v e r a l f a c t o r s m u s t be t a k e n
into
account. The
grain size distribution
s h o u l d be s o a s t o
the d e s i r e d p o r o s i t y i n the u n s i n t e r e d zone dense
structure necessary
distributions
to the w o r k i n g
and a c h i e v e
face.
the
Usually
are very s i m i l a r to the F u l l e r curve
Regarding
produce
(5).
c o m p o s i t i o n , the ramming m i x t u r e w i l l
c o n s i s t o f main c o n s t i t u e n t s and a b i n d i n g a g e n t . of a MgO/MgO.Al^0^.spine1 mixture, to promote s i n t e r i n g
always
In the
f o r i n s t a n c e , SiO^ i s
( i n a m o u n t s up t o 3% ( 5 ) ) .
these
Care
case added
should
16
be e x e r c i s e d when
s e l e c t i n g the amount and c o m p o s i t i o n
of the
b i n d i n g a g e n t s i n c e i t i s u s u a l l y l e s s s t a b l e a n d , as f a r as attack resistance i s concerned, One s h o u l d u s e t h e m i n i m u m ing
at the d e s i r e d f i r i n g
d e l e t e r i o u s to the
lining.
amount n e c e s s a r y to a c h i e v e temperature.
sinter-
O b v i o u s l y , as t h e
amount o f b i n d i n g agent i s d e c r e a s e d , t h e f i r i n g
temperature
m u s t be i n c r e a s e d u s u a l l y i n t r o d u c i n g t e c h n i c a l
difficulties.
D e p e n d i n g on t h e k i n d o f c o r e u s e d mixture,
firing
c a n be d o n e i n t w o w a y s .
template
was u s e d i n r a m m i n g t h i s w i l l
place during firing that will
quent
I f a mild
steel
u s u a l l y be l e f t i n
m e l t away i n a f i r s t wash
provide the c o r r e c t f i r i n g
case, the lining be f i r e d
and w i l l
f o r ramming t h e
temperature.
In t h i s
s h o u l d be a l l o w e d t o d r y c o m p l e t e l y
under vacuum, t o minimize
wood c o r e i s u s e d ,
firing
in the furnace.
c a n be d o n e e i t h e r b y h e a t i n g up a
c a n be u s e d
to f i r e
g r a p h i t e c o r e be u s e d , vacuum, t o m i n i m i z e core
initial
The use o f t h e wood c o r e i s recommend-
e d s i n c e i t c a n be r e m o v e d a n d a g r a p h i t e c o r e w i t h dimensions
subse-
I f a graphite or a
g r a p h i t e c o r e o r b y r e m o v i n g t h e c o r e a n d m e l t i n g an charge
and then
i r o n o x i d a t i o n and
i r o n o x i d e p i c k - u p by t h e l i n i n g .
heat
up t h e l i n i n g .
the f i r i n g
imprecise
Should a
s h o u l d n o t be made
the r e a c t i o n between the l i n i n g
under and the
(5 ). The
main problem
experienced with monolithic
however, i s c r a c k i n g , s i n c e the l i n i n g mechanical
and thermal
uncommon t o p r o d u c e
stresses.
a lining
with
linings,
i s subjected to severe
During
firing
i t i s not
c r a c k s , p a r t i c u l a r l y as t h e
17
lining
dimensions,
and hence
the s t r e s s e s , are i n c r e a s e d .
When a c r a c k i s f o u n d a f t e r f i r i n g , t h e c r u c i b l e m u s t a l l o w e d t o c o o l , and the c r a c k f i l l e d w i t h cement. thermal
This
c y c l e and the i n t r o d u c t i o n o f a d i f f e r e n t m a t e r i a l
can p r o d u c e
new
cracks.
with large furnaces.
T h i s becomes a very d i f f i c u l t
As S c h l a t t e r a n d S i mko v i ch ( 3 0 )
concerning r e f r a c t o r i e s performance volume s t a b i l i t y , escalated".
(tightness or construction,
this problem
they used r e f r a c t o r y brick/cement excellent crucible lifes.
i n a 6 0 , 0 0 0 l b VIM c o n s t r u c t i o n and
They used Korundal
b o n d e d w i t h M u l l i t e ) as a b a c k i n g
lining,
thermal
or Magnesia
and e i t h e r t h i s
(MagneT) as t h e w o r k i n g
present industrial
problems
r e s i s t a n c e t o c r a c k i n g and s p a l l i n g ) a r e
To a v o i d
stability
problem
pointed
o u t , "as t h e s i z e o f f u r n a c e i s i n c r e a s e d , a l l t h e
spinel
be
lining,
XD
due
furnace,
reported (Alumina
t o i t s good bonded
the l a t t e r
practice in large furnaces.
with
being
Due
to
the the
h i g h d e n s i t y o f t h e XD b r i c k , i t s h o w e d b e t t e r r e s i s t a n c e t o FeO
s l a g s than a 90% Alumina
(28) s t u d i e d the c h e m i c a l
ramming mix
stability
w i t h z i r c o n i a and magnesi te-chrome in contact with d i f f e r e n t carbon observed
t h a t the performance
(29).
Simkpvich
of Korundal commercial
activity
XD as
refractories,
alloys.
t h e s a m e f o r t h e same a l l o y , as f a r a s
consumption
was
As t h e a u t h o r s
b e h a v i o u r o f t h e Z i r c o n i a c r u c i b l e was justify,
He
o f the t h r e e c o m p o s i t i o n s
essentially
concerned.
compared
found,
was
carbon the
indeed d i f f i c u l t to
s i n c e the h i g h e r p o r o s i t y alone would
o v e r r i d e the h i g h e r thermodynamic s t a b i l i t y .
be u n l i k e l y t o The
comparable
18 behaviour present
o f m a g n e s i t e - c h r o m e and no s u r p r i s e , s i n c e
and
10.5%
^^ °3
and
the
z i r c o n i a c r u c i b l e has
z
the
k i n e t i c basis only
the
the oxides
This
in practice.
carbon contents
these in the
system.
Chester
(52)
to the
in lining
very
but
and
melting
coils.
(larger furnaces)
not experience
penetration
d e p t h o f low
a
possible
In t h e
of
be
In that
the
induced
high the
progressively
case
of
lower
i t is likely that
further heating, frequency
used
use
furnaces.
between the b r i c k s w i l l
metal w i l l
melting,
dangerous s i t u a t i o n
i t is quite
frequency
improved
e a r l i e r by
recommended the
frequency
h e a t e d as i t a p p r o a c h e s t h e
Renkey et a l .
l i f e when b r i c k s w e r e
in induction
metal penetrating
net
r e s u l t s f r o m one
been r e p o r t e d
difficult
melting
expected
d e f i n i t e l y t h e weak l i n k
c a u s e d by j o i n t p e n e t r a t i o n induction
test, detrimental
o r by
observed, in a i r induction
i n s t e a d o f ramming m i x t u r e s ; l a t t e r , due
(30)
the b e s t
the j o i n t s are
substantial increase
to the
g o o d b r i c k l a y i n g and
T h i s e f f e c t has
who
validity
Simkovich
are
encountered.
e f f e c t s are more
are e s s e n t i a l to obtain
linings since
resistance,
Although this point is
"close size tolerances,
mortars"
abrasion
ZrO^)
to give even b e t t e r r e s u l t s .
(29),
in a
M g O / A T ^ O ^ ( M a g n e l ) b r i c k was
e m p h a s i z e d by S c h l a t t e r a n d
of
( i n c l u d i n g M g O j A ^ O ^ and
fact that gives
The
behaviour
surface)
e s p e c i a l l y s i n c e s u r f a c e / v o 1 ume than
2
u s e d (5u a t the b a t h
f o r the
the
17.4%Cr 02
to f i n d i t s e x p l a n a t i o n
(porosity, strength,
CO
is exactly
The
2
in question
l e s s s t a b l e than
shou1d
former contained
l a t t e r 10%S i 0 .
e t c . ) , s i n c e at the pressure all
a 1umina-si1ica
due
to the
current.
this large
of
19
Bonchack an i n d u s t r i a l
(47) r e p o r t e d s e v e r e e r o s i o n at j o i n t s
VIM
furnace, using Korundal
in
XD b r i c k s a n d
• C o r a l b a n d c e m e n t (82%A1 0 / 1 5 % S i 0 / 2 % T i 0 / 1 % F e 0 ) . 2
3
2
also observed t h a t the j o i n t s with
2
2
He
3
l e s s mortar were
less
e r o d e d a n d c o n c l u d e d t h a t t h e m o r t a r q u a l i t y was
inferior
the b r i c k q u a l i t y .
of a
A1 0^ 2
base
The
need
f o r the development
c e m e n t t o be u s e d b o t h w i t h K o r u n d a l
to
MgO/
XD a n d
Magnel
b r i c k s was t h e n s u g g e s t e d . I t i s i n t e r e s t i n g t o n o t e t h a t the use o f K o r u n d a l in t h e w o r k i n g
l i n i n g i s not i n d u s t r i a l
p r a c t i c e any
more,
s i n c e S c h l a t t e r (53) r e p o r t e d p e r s i s t e n t b o i l i n g w i t h steel
c o m p o s i t i o n s , due t o t h e 8.5%
Si0
2
present in
XD
certain Korundal
XD. The main
d i f f i cu 1 t y w i t h c e m e n t s
f a c t t h a t they s h o u l d bond at r e l a t i v e l y
to the b r i c k
and m o r t a r s
and a c q u i re s t r e n gth
low t e m p e r a t u r e s , s i n c e t h e w h o l e
furnace
be f i r e d f o r t h e s a m e t i m e a n d a t t h e s a m e h i g h as w e r e t h e b r i c k s .
l a r g e r amounts o f f l u x e s than in the b r i c k .
unstable
u n d e r VIM
b o r i d e s ) a n d may out e a r l i e r furnace bonded mm
Unfortunately,
cements
are r a t h e r and
l e a d t o c o n t a m i n a t i o n o f t h e m e l t , as p o i n t e d A 3000kg heat of s t e e l
f o r i n s t a n c e , w i t h 5% a r e a c o v e r e d b y a
o f cement
use
c o n d i t i o n s (as s i l i c a t e s , phosphates
f o r boron.
commercial
cannot
temperature
T h i s makes i t then n e c e s s a r y t o
most o f the f l u x e s used i n commerical
i s the
cement, w i l l
eroded.
in a
VIM
phosphate
a b s o r b a s m u c h as l . l p p m
per
20 1.2.3
Other
Apart
R e a c t i o n s Wi t h t h e L i n i n g
from
r e a c t i o n s i n v o l v i n g oxygen
(oxides) in
the l i n i n g , most o f t h e work done i s r e l a t e d t o d e s u l p h u r i z a tion
(de-S).
Sulphur
removal
by vacuum i s e x t r e m e l y
ineffect-
i ve, e i t h e r as gas 2S = S ( g ) 2
or as v o l a t i l e
compounds as
Sj_ + S = S i S ( g ) T.P. melts--which
Floridis
( 5 4 ) r e p o r t s 1.25h @ 6u i n C and S i r i c h
i n c r e a s e S a c t i v i t y - - a r e needed t o reduce
content to 50% o f i t s i n i t i a l and
reaction in steel
have been used:
value.
sulphur
S i n c e d e - S i s an
and N i - a l l o y making, three
import-
approaches
the use o f s l a g s , the p a i n t i n g o r c o a t i n g o f
the r e f r a c t o r i e s , and t h e use o f Rare
Earth Metals
(REM).
Ward e t a l . (55) t r i e d s e v e r a l d i f f e r e n t m e t h o d s o f adding
l i m e t o de-S a VIM s t e e l
marble
c h i p s was o f v e r y
formed
a r i n g around
area.
The use o f lime/water
presented
heat.
The use o f c a l c i n e d
l i t t l e e f f e c t since the lime r a p i d l y
the c r u c i b l e wall
reducing the contact
paste over the r e f r a c t o r i e s
the best r e s u l t s , with
very good de-S.
In t h e c a s e
of s p i n e l r e f r a c t o r i e s , however, the lime reacted with the r e f r a c t o r y and s w e l l e d , d e c r e a s i n g t h e i n n e r d i a m e t e r crucible.
A l s o , when u s i n g p u r e
c o a t i n g and adherent
metal
f r e s h a p p l i c a t i o n was m a d e . under
MgO r e f r a c t o r y , t h e CaO
was r e m o v e d a f t e r e a c h This process
present problems
head and a
i s only f e a s i b l e
vacuum due t o t h e h i g h f l u x i n g a b i l i t y
This would probably
of the
F e O h a s on l i m e .
w i t h an i n d u s t r i a l
scrap
21 charge.
A l s o , no o b s e r v a t i o n
i s made w i t h
regard to the'life
of the c r u c i b l e . The
u s e o f s l a g s i n VIM i s e x t r e m e l y
to the f a c t t h a t the whole process Although
very ingenious
proposed
i n p r i n c i p l e (56) i t i s extremely
will
processes
occurs
c u m b e r s o m e , due
in a sealed
f o r slag handling
Besides,
point.
to s o l i d i f y
are heated
Although
there are suggestions
here.
in the center
In o r d e r t o g u a r a n t e e
f l u x i n g a d d i t i o n s such
ies. with
these
as C a F
having
2
a low m e l t i n g
Afanasyev 3
c r u c i b l e s and poured
i s made t o r e f r a c t o r y w e a r a p a r t
crucibles.
Although
values are not given
slags
having melted
either a f t e r or before the
from
over the metal,
severe
i n large
The s l a g s were
i n t h e c r u c i b l e a n d g o o d d e - S was o b s e r v e d .
happened causing
point,
e t a l . (58) t r i e d
C a O / S i 0,,/Al 0 w.i t h 1 ow F e O c o n t e n t s ,
t h e s l a g was p o u r e d
n o t be
v a r i o u s t r i a l s w e r e made
points o f ~1500°C o r 2000°C.
in g r a p h i t e
and w i l l
m u s t be i n t r o d u c e d
difficulties,
2
(57), t h i s
a f l u x i n g e f f e c t on t h e r e f r a c t o r -
siag-desulphurization.
melting
metal
thereby
Despite
in the system
induc-
of using a
i s n o t a common i n d u s t r i a l p r a c t i c e a t p r e s e n t
quantities,
by
i f i t does n o t have a very low
plasma t o r c h t o keep t h e s l a g molten
considered
joints.
and the s l a g i s c o n s t a n t l y r a d i a t i n g t o the f r e e -
i t is likely
melting
they
of the slag
movable vacuum
since only e l e c t r i c conductors
tion heating board,
through
c a n be
unlikely that
s u r v i v e t e c h n i c a l problems as t h e removal
handling tool introduced
chamber.
observations
considerable
No
reference
t h a t when foaming
i n c r u s t a t i o n s in the walls o f the
t h e s l a g s were a n a l y s e d
a f t e r usev t h e
b u t one can a n t i c i p a t e s i l i c a
reduction
22 w i t h CO one
formation
( e s p e c i a l l y in the h i g h e r carbon
o f the main causes
improved
of foaming.
The
de-S
as
r e s u l t s are
f o r a l l C c o n t e n t s , as c o m p a r e d t o a t m o s p h e r i c
p r e s s u r e de-S,
but the most s i g n i f i c a n t
improvement i s
i n t h e low C ( 0 . 0 3 5 % ) s t e e l , p r o b a b l y
due
FeO
Polyakov
content a c h i e v a b l e under
vacuum.
2
sulphur content
and
concluded
power.
cases.
Volkov
e t a l . (61)
2
3
(59)
slags
on
is only
2
L i n c h e v i s k i i (60)
i n v e s t i g a t e d the use o f both o f CaO/CaF s i u r r i e s p a i n t e d to the w a l l s and
lower
et a l .
t h a t the e f f e c t o f C a F
o f f l u x i n g , h a v i n g no d e - S
found
t o t h e much
i n v e s t i g a t e d the e f f e c t of v a r i o u s C a F / C a O / A T 0
one
melts)
2
mixtures
achieved
and
good de-S
studied various mixtures
of in
CaO both
of
CaO/
C a F , C a O / A l 0 / C a F , C a O / C a F / S i 0 , p l a c e d on t h e b o t t o m
of
the c r u c i b l e .
CaO/
2
10% C a F
2
2
3
2
The
mixture
2
2
b e s t r e s u l t s w e r e a c h i e v e d w i t h a 9.0%
p l a c e d on t h e b o t t o m
of the c r u c i b l e t h a t
would, a f t e r the m e l t i n g p r o c e s s , s i n t e r to the bottom c r u c i b l e , being cleaned a f t e r the pouring. authors
do a d m i t
t h a t t h e u s e o f s l a g s may
of
In t h i s w o r k form
the the
a c c r e t i o n s on
the c r u c i b l e w a l l s , reducing i t s l i f e . S c h l a t t e r e t a l . (62) p a t e n t e d Ca0/CaF
2
o r o t h e r f l u x e s and
having
lower m e l t i n g p o i n t than
T h e i r t r i a l s were p e r f o r m e d Magnel) c r u c i b l e s . erosion critical
Although
the use of m i x t u r e s
a reducing agent, the metal
being
in Magnesia/Spinel
e i t h e r C or
in this
REM,
produced. (possibly
t h e r e i s no r e f e r e n c e t o b r i c k
in the p a t e n t , the c o n t r o l of the s l a g c o m p o s i t i o n (53)
of
respect.
is
23 In a s o m e w h a t d i f f e r e n t a p p r o a c h employed fused deoxidation
l i m e c r u c i b l e s , a ch i e v i n g ex ce 11 en t
by s i l i c o n
(due
i n the r e f r a c t o r y ) and c o o l i n g and crucible in
Strushchenko
to the
lowered
h e a t i n g t o room t e m p e r a t u r e .
( 2 0 k g ) was
of
SiO^
8 cycles
However the
of
small
f i r e d at 2000°C Which i s not f e a s i b l e
larger scale operations.
hydration • problems,
de-S,
activity
r e s i s t a n c e t o more t h a n
(35)
One
should the
has
a l s o to c o n s i d e r
furnace
the
chamber need to
be
opened f o r r e p a i r s . Several the
literature
r e p o r t s o f de-S (63, 64,
65).
with Small
REM
i n VIM
problems with
able Rare E a r t h Metal
recovery,
melts
of " o x i d e - l i k e " slags
(56), formation
p e r s i s t , but the main problem costumers. -
carry-over to
i s one
exceed
found
unpredict-
(63), etc., by
T h i s i s b e c a u s e t h e e x a c t e f f e c t s o f REM
of d e l e t e r i o u s RE-Fe phase
certain
limits.
except
in
subsequent
of acceptance
to s u p e r a l l o y s are not w e l l u n d e r s t o o d , formation
are
f o r the
( 6 4 ) when t h e s e
still
the addition known additions
24
1.3
O b j e c t i v e s o f the Research
Project
S i n c e i t i s w e l l e s t a b l i s h e d t h a t i n VIM
furnaces
u s i n g b r i c k - m o r t a r l i n i n g s t h e w e a r i s l o c a l i z e d on t h e mortar
joints
(50,66),
mortar
( o r c e m e n t s ) by s t e e l s a n d / o r
most i m p o r t a n t
i t was d e c i d e d t h a t t h e a t t a c k o f
p o i n t t o be s t u d i e d .
s u p e r a l l o y s was t h e T h i s s t u d y was t o
e n c o m p a s s b o t h t h e a t t a c k m e c h a n i s m s a n d some r o u g h e s t i m a t i o n of the r e a c t i o n r a t e s , although
no a t t e m p t
e x a c t k i n e t i c s was t o be m a d e .
In a d d i t i o n , a t t e m p t s
be made t o d e v e l o p order t o improve
a cement w i t h o u t
low s t a b i l i t y
the overall lining
performance.
F i n a l l y , samples analysed and
to derive the
o f used
oxides, in
V I M r e f r a c t o r i e s w e r e t o be
and c o r r e l a t i o n s attempted
between these
observations
the test r e s u l t s , in order to verify the v a l i d i t y
experimental
findings.
were t o
of the
25
CHAPTER 2 EXPERIMENTAL In
order to study the attack o f mortar
we p r o p o s e d ,
d i f f e r e n t t e c h n i q u e s were c o n s i d e r e d .
w e t t i n g s t u d i e s ( s u c h as s e s s i l e d r o p s ) to
b y m e t a l s , as
p r e d i c t the s t a b i l i t y
have been
and r e a c t i o n o f metals
Although extended
with
ceramic
substrates
( S u t t o n ' s ( 1 9 ) , f o r i n s t a n c e ) i t was f e l t
they would
not, in a l lcases, simulate exactly or closely
e n o u g h t h e c o n d i t i o n s o f VIM. cases r e a c t i o n products which d r o p l e t may be f o r m e d
This a r i s e s because
that
i n some
limit the spreading of the
(67) and t h e chemical
composition
of
t h e d r o p l e t may be s u b s t a n t i a l l y a l t e r e d i n a r e a s o n a b l y experiment.
T h i s e f f e c t has been
where t h e r e a c t i o n o f carbon refractories volume r a t i o s
i s concerned
long
noti ced parti cul arly i n cases
i n the metal with the oxide
due t o t h e v e r y h i g h i n t e r f a c e /
(both metal/ceramic
and metal/vacuum).
In
a d d i t i o n i t was d e s i r e d t o a c q u i r e s u f f i c i e n t k n o w l e d g e o f the o r d e r o f magnitude element
losses and/or
estimated in a real
o f t h e r e a c t i o n r a t e s so t h a t oxygen
pick-up
furnace based
alloying
( i f a n y ) c o u l d be
on t h e d a t a g e n e r a t e d .
a l a s t f a c t o r i t was f e l t t h a t w e t t a b i l i t y t e s t s w o u l d
As over-
emphasize
small variations in surface finish.
Since the
materials
used were e i t h e r commercial
used
products
in real
furnaces or experimental
c o m p o s i t i o n s , they would n e c e s s a r i l y
vary s l i g h t l y i n surface
finish.
26
In crucibles of metal time.
order then
t o s i m u l a t e t h e VIM p r o c e s s ,
as shown i n F i g . 3 were p r o d u c e d , were melted
under
ment o f t h e e x p e r i m e n t a l once,
and no a t t e m p t
quent
heats
of the size
s e t - u p , each
length of
and t h e arrange-
crucible
in a crucible.
was u s e d
only
I t was r e a l i z e d t h a t t h e s u r f a c e /
c r u c i b l e was o b v i o u s l y q u i t e
a s m a l l VIM f u r n a c e ; h o w e v e r , t h i s
experimental
amounts
was made t o s t u d y t h e e f f e c t o f s u b s e -
volume r a t i o i n t h i s to even
and fixed
vacuum, f o r a c e r t a i n
As a n a t u r a l c o n s e q u e n c e
small
case, l a r g e r than
dissimilar
ratio i s , in the
in the actual
case.
Conse-
quently a magnification of the reaction
effects
hence i m p r o v i n g
the a b i l i t y
to assess the s t a b i l i t y
of r e f r a c t o r i e s
i n contact with melts
of the test
e f f e c t p r e s e n t was p o s s i b i 1 i t y by t h e m e t a l , w o u l d
cause
under
i s observed,
vacuum.
Another
that wetting of the crucible
variations
in t h e m e t a l / r e f r a c t o r y i n t e r f a c e s ,
i n t h e vacuum/metal and as shown i n F i g . 4 .
felt,
however, that since these wetting c h a r a c t e r i s t i c s
quite
r e p r o d u c i b l e f o r each
cause
a significant variation
The
of the
in interfacial
refractories
apparatus
under
distance
through
The
a Pyrex
from the metal
order to calibrate pyrometer
area that
glass,
vacuum. The temper-
a narrow-angle
infrared
placed at a s u f f i c i e n t
to minimize
condensation
f o r emi s s i v i t i e s ,
directly controlled
they
of the relative
e m p l o y e d i s shown i n F i g . 5 .
a t u r e m e a s u r e m e n t s w e r e made w i t h pyrometer
were
meta 1/re f rac to ry p a i r and d i d n o t
c o u l d be a s s u m e d n o t t o a l t e r t h e p l a c e m e n t stabilities
I t was
pure
on i t . I n
Fe a n d N i w e r e
t h e power supply
and a
used.
27 v a r i a t i o n w i t h i n + 5°C o f the s p e c i f i e d t e m p e r a t u r e typical. r a t e was
T h e p r e s s u r e was
always
v e r i f i e d before each
was
k e p t b e l o w 30y and t h e l e a k
run.
The c o m p o s i t i o n s o f t h e m a t e r i a l s u s e d f o r t h e
tests
a r e g i v e n i n T a b l e s 5 and 6 and e x c e p t where n o t e d , t h e y a r e nominal
c o m p o s i t i o n s g i v e n by t h e The m e t a l l i c s a m p l e s
with steel
o r 13.5g
A typical ambient
suppliers.
weighed
tests
+ O.lg f o r the t e s t s with s u p e r a l l o y s .
melt c y c l e would
temperature
lOg + O.lg f o r the
f o r complete
a s h o r t h o l d i n g time at around s u p e r h e a t i n g to 1520°C
i n v o l v e slow h e a t i n g from
o u t g a s s i n g of the
crucible,
1000°C, m e l t i n g the
( i n t h e c a s e o f 1095
sample,
s t e e l ) or to
( i n the case o f N i c k e l v a c X-750) , h o l d i n g a t t h a t
1500°C
temperature
f o r the d e s i r e d p e r i o d o f t i m e , t u r n i n g o f f the power s u p p l y and c o o l i n g to ambient
temperature
under vacuum.
This
was
done i n o r d e r to m i n i m i z e the c h a n c e s o f o x i d a t i o n o f the metallic
sample. The c r u c i b l e s were p r o d u c e d i n a p a p e r m o u l d w i t h a
p a r a f f i n wax temperature
core.
After drying (or s e t t i n g ) at
ambient
they were e i t h e r f i r e d a t the r e q u i r e d t e m p e r a t u r e
(in a g a s - f i r e d f u r n a c e ) or h e a t e d to a t e m p e r a t u r e range of 600°-700°C
in the
to burn t h e p a p e r and t h e p a r a f f i n
wax
and t h o r o u g h l y d r y them. Metal
samples
f o r c h e m i c a l a n a l y s i s were s e p a r a t e d
from the c r u c i b l e s , c a r e f u l l y c l e a n e d of r e f r a c t o r y tions, filed
incrusta-
to e l i m i n a t e open p o r o s i t y and then c u t i n s m a l l
pieces for analysis.
The c a r b o n and o x y g e n
a n a l y s e s w e r e made
28
by t h e c o n v e n t i o n a l t e c h n i q u e s i n L E C O a n a l y s e r s . In o r d e r t o o b s e r v e t h e r e f r a c t o r y - m e t a l i n t e r f a c e s or o t h e r r e f r a c t o r y samples the specimens or removing
without s e p a r a t i n g the metal grains of the ceramic.
t h i s , the samples under
i t was n e c e s s a r y t o c u t a n d
vacuum.
were i m p r e g n a t e d
w i t h 1 ow-vi s cos i t y epoxy, meta11ographic
to l y diamond p a s t e , they were
e i t h e r i n an O p t i c a l
observed
Microscope or in a Scanning Electron
M i c r o s c o p e e q u i p p e d w i t h an X - R a y E n e r g y some
from the ceramic
In o r d e r t o a c c o m p l i s h
A f t e r p o l i s h i n g by s t a n d a r d
t e c h n i q u e s , down
polish
cases the microprobe
was a l s o
used.
Spectrometer.
In
29
CHAPTER 3 RESULTS S i n c e t h e t e s t s made w i t h s t e e l s a n d w i t h s u p e r a l l o y s are a n a l y s e d i n d i f f e r e n t w a y s , as d i s c u s s e d b e l o w , section will
this
be d i v i d e d a c c o r d i n g t o t h e a l l o y u s e d f o r t h e
tests. 3.1
T e s t s Using AISI In
1095 S t e e l
order to avoid problems with variation
and oxygen c o n t e n t and a c t i v i t y ensure
o f carbon
over a wide range,
and t o
r e a c h i n g t h e s t e a d y s t a t e d e s c r i b e d by M a c h l i n , a
high-carbon
s t e e l was s e l e c t e d f o r t h e s e t e s t s .
Although
c a r b o n was t h e e l e m e n t t o be s t u d i e d , t h e i n t e r e s t was i n steel
i n t e r a c t i o n w i t h r e f r a c t o r i e s and so a p l a i n
commercial in
s t e e l was s e l e c t e d .
this steel
2 hours,
consumption
under vacuum.
Tasil
Although
X — ( M u l ' l i t e Based
initial
The t e s t s
content.
Cement)
t h i s p r o d u c t i s n o t d e s i g n e d t o be u s e d i n
contact with metal
i n a VIM f u r n a c e b u t r a t h e r as a
support f o r the coils composition
content
f o r v a r i o u s l e n g t h s o f time, from 5 minutes t o
and t h e m e t a l was a n a l y s e d f o r c a r b o n
3.1.1
oxygen
(due t o the high C content) minimizes
v a r i a t i o n s i n carbon were c o n d u c t e d
The low i n i t i a l
carbon
and t h e l i n i n g i t s e l f ,
makes i t p a r t i c u l a r l y
mechanical
i t smullite
interesting since i t enables
30 one
t oanalyse
silica
the behaviour
activity
refractory mullite silica
to the
in the b i n a r y S i O g / A ^ O ^ j w i d e l y
industry.
composition content
corresponding
Any
minimum used
in
cement w i t h h i g h e r alumina
s h o u l d be designed
in a m u l l i t e form,
the
than
the
s o as to have a l l i t s
to minimize
the
silica
activity. Fig.
6 presents -
(C.
the v a r i a t i o n of carbon
Cp. .• ,) a f t e r m e l t i n g i n T a s i l
initial
very high consumption
is r e a d i l y apparent.
c r u c i b l e s (Alundum
of carbon
The
and
parabolic relationship indicates
of
the m e t a l / r e f r a c t o r y i n t e r f a c e a f t e r a short
(5 m i n s . ) F i g . 7 , o n e
silica
can
s e e how t h e m u l l i t e i s d e p l e t e d
a t t h e i n t e r f a c e and
remaining
i s the d i f f u s i o n o f
oxygen.
Observing time
1139).
b y the m u l l i t e r e f r a c t o r y
that the c o n t r o l l i n g step in the process s i l i con
Xcrucibles,
Tina I
compared with m e l t i n g in alumina The
content
how t h e a l u m i n a
particles
have a h i g h e r s p e c i f i c a r e a , f u r t h e r e n h a n c i n g
dissolution
of the r e f r a c t o r y .
I f one
c a l c u l a t e s the
in e q u i l i b r i u m w i t h pure Rosenqvist
the
(68) 3 A 1
activity
alumina,
of s i l i c a
using the data
from
f o r the r e a c t i o n 2°3
+
2 S i 0
2
=
3 A 1
2°3 *
2 s i 0 2
A G
a v a l u e o f 0.45
in m u l l i t e ,
is obtained.
i n e q u i 1 i b r i urn w i t h p u r e u s i n g the e q u i l i b r i u m
(Mullite) 1600°C
=
6000C
- a~\
C a l c u l a t i n g t h e p r e s s u r e o f CO
silica
or with s i l i c a
at this
activity
31 S
one
+ 2_C = 2 CO + SJ_
2
finds P
and hence in
i 0"
mullite
n
cases s i l i c a
of carbon
the a c t i v i t y
under
will
be e x t r e m e l y
by t h e m u l l i t e f o r m a t i o n i s
to the i n c r e a s e i n carbon
d e p r e s s i n g t h e CO
unstable
vacuum, i . e . , the l o w e r i n g i n
of s i 1ica caused
not comparable
3.1.2
a
c 0
in both
presence
-. ^ S i O ? = 0.67 p 2
C 0
activity
caused
pressure.
Cements with
10% S i 0
( T a y l o r 320,
2
Alundum
F o l l o w i n g the t e s t s with the m u l l i t e based lower
silica
cements were t e s t e d , i n o r d e r to
whether or not they would
1162)
cement,
determine
be m o r e i m m u n e t o a t t a c k by t h e
T h i s c o u l d h a p p e n due t o t h e l o w e r e x p o s e d s t a b i l i t y phase
by
( m u l l i t e or s i l i c a
area of the
steel.
low-
r i c h compound, s i n c e in
some c a s e s , o t h e r f l u x e s , s u c h a s A l k a l i n e o x i d e s w e r e p r e s e n t ) . In observed.
a l l c a s e s e x t e n s i v e w e t t i n g o f t h e c r u c i b l e was When T a y l o r 320 was
used a f t e r d r y i n g a t
( s i n c e i t i s r e c o m m e n d e d t h a t i t be u s e d w i t h o u t voilent boil crucible. carbon
firing),
a
out of
the
o c c u r r e d , t h r o w i n g most o f the metal
When t h e s e s a m p l e s
consumption
were a n a l y s e d , t h e y
o f up t o 0 . 1 %
in 5 minutes.
600°C
showed
Since
the
c r u c i b l e s w e r e c e r t a i n l y w e l l d r i e d ( n o t o n l y due
to the
600°C
d r y i n g but a l s o because
vacuum
before
melt-down),
f i r i n g was
of the slow h e a t i n g under attempted
t h a t the most s t a b l e s i l i c a The metal carbon
did not boil
consumptions
w i t h the aim o f making
c o n t a i n i n g phases
would
be
in the f i r e d c r u c i b l e s , a l t h o u g h
were s t i l l
high, being of the order
sure formed. the of
32 0.2%
i n 30 m i n .
refractories
X-Ray d i f f r a c t i o n
on p o w d e r o f
both
r e v e a l e d a low i n t e n s i t y s e t o f q u a r t z p e a k s i n
the u n f i r e d sample, while lower
analyses
the f i r e d sample presented
a much
i n t e n s i t y s e t o f q u a r t z p e a k s as w e l l as p e a k s
sodium-potassium h o w e v e r , was
a1umino-si1icates.
of
The most d r a m a t i c
in the p h y s i c a l appearance
change,
of the c r u c i b l e s , with
t h e f i r i n g b r i n g i n g an e x t e n s i v e d e n s i f i c a t i o n o f t h e s t r u c t u r e , p a r t i c u l a r l y a t t h e s u r f a c e , a s s h o w n i n F i g . 8. probably
T h i s would
be r e s p o n s i b l e f o r t h e h i g h e r s t a b i l i t y
in the
fired
c o n d i t i on . When one crucible
observes
( F i g . 9) o n e
in s i l i c a
caused
notices a reasonably
by t h e d i f f u s i o n
less s t a b l e component. the high alumina
i n f e r i o r mechanical e a r l y , maybe even
d e n s i t y than to suppose
of
this
Fig. 9 that
had t h e
binding
which
l a y e r has
probably
break
a much
o f f very
d u r i n g the s h r i n k i n g or the c l e a n i n g of
the
furnace.
C e m e n t s P r o d u c e d Us'i n-g F l u o r i d e s
Since the t e s t s with s i l i c a the inadequacy
of s i l i c a carbon
Magnesia
b e a r i n g cements
as a f l u x f o r u s e
s t e e l , i t was
a d d i t i o n s to a l u m i n a spine1-bonded
2
the bulk of the r e f r a c -
that this
s t r e n g t h and w i l l
i n an a c t u a l
contact with
from
region between the g r a i n s
It i s reasonable
3.1.3
decomposition
It i s also obvious
r e s u l t e d i n a much l o w e r
skull,
and
Si0
thick layer depleted
layer depleted in silica'has
phase removed from the
tory.
the a l t e r e d l a y e r o f a 10%
under
revealed
vacuum i n
decided to t r y d i f f e r e n t
in order to promote i t s r e a c t i o n with b r i c k (Magnel) used i n
VIM.
the
33
I t i s known- t h a t f l u o r i d e s a r e v e r y good f l u x e s f o r t h i s system and
(and f o r that matter,
f o r almost
any oxide
system)
t h e y h a v e b e e n u s e d i n many c a s e s t o p r o m o t e r e a c t i o n i n
refractory production (69, 70). effective
Although
i n t h i s t h e y p r e s e n t some l i m i t a t i o n s s u c h a s
e x c e s s i v e a t t a c k on t h e r e f r a c t o r i e s of c l i n k e r ) (69), a decrease alumina
they are very .
(during the production
in sintering
sintering) (70), the possibility
ability of health
(since water soluble f l u o r i d e s are hazardous) flouride emissions
( i n pure hazards
and p o s s i b l e
d u r i n g f i r i n g . \ However, t h e two
first
l i m i t a t i o n s are a c t u a l l y advantages i n the case o f t h e i r utilization and
i n a cement, i . e . , r e a c t i o n with the r e f r a c t o r i e s
c o n t r o l l e d sintering, in order to achieve a r e l a t i v e l y
porous
product with
little
dimensional
change.
p r o b l e m s may i n d e e d p r e s e n t d i f f i c u l t i e s
T h e two o t h e r
i f not dealt with
care fu 1 l y . The
s e l e c t i o n of a non-water soluble f l u o r i d e , at a
reasonable price, Li
fluorides.
percentage
l i m i t s o u r c h o i c e e s s e n t i a l l y t o C a , Mg a n d
With r e s p e c t to the f l u o r i d e e m i s s i o n s , i f the
of fluoride
i n the cement i s kept at a reasonable
l e v e l , and the amount o f cement m i n i m i z e d , VIM
as p r a c t i c e d i n
o p e r a t i o n s , one s h o u l d n o t e x p e c t a h i g h c o n c e n t r a t i o n o f
fluoride emissions
during the f i r i n g o f the c r u c i b l e .
Due t o i t s r e a d y a v a i l a b i l i t y , c a l c i u m f l u o r i d e selected f o r the i n i t i a l
tests.
was
In o r d e r t o e n s u r e t h e
p o s s i b i l i t y o f f l u x i n g , some c a l c i u m o x i d e was a l s o a d d e d , with the aim o f reaching the t e r n a r y e u t e c t i c at approximately
34 4% C a O / 7 2 % C a F / 2 4 % ' A l g O g .
Of c o u r s e a l l the
2
t e s t e d were s a t u r a t e d w i t h a l u m i n a , the t e s t s b e i n g 82% A l 0 / 1 4 % 2
u s e d was 1139,
the f i n a l
C a F / 4 % CaO
3
A l l the samples
and
were f i r e d
in a g a s - f i red f u r n a c e f o l l o w i n g which composed of ca1ciurn a 1uminates m i c r o s t r u c t u r e shown i n F i g . No spectrum.
f o r m a b i l i t y to
f o r two
hours
they were
o r CA
3
The
1300°C
typical
were p r e s e n t i n the
and,
2
X-Ray
peaks
could
i n some c a s e s C A g .
Only
2 8 % a n d t h e c a l c i u m o x i d e t o 8% c o u l d some be o b s e r v e d .
at mainly
i n c a s e s when t h e a m o u n t o f c a l c i u m f l u o r i d e was
C^A^
the
10.
In a l l c a s e s , t h e c a l c i u m a l u m i n a t e as C A,_
in
alumina
and a l u m i n a , w i t h the
c a l c i u m f l u o r i d e peaks
be i d e n t i f i e d
used
c a s t a b l e cement Alundum
in order to impart p l a s t i c i t y
mixture.
one
where the
2
a c t u a l l y the high alumina
compositions
i n c r e a s e d to
low-melting
p r o d u c t i o n of the c a l c i u m
aluminates
is a t t r i b u t e d to the c o n v e r s i o n of the c a l c i u m f l u o r i d e c a l c i u m o x i d e by one 3CaF CaF
2
of the f o l l o w i n g r e a c t i o n s :
+ Al 0
2
2
+ H0 2
3
= 2A1F
= 2HF
+
+ 3CaO
3
CaO
In o r d e r t o t e s t t h e a d e q u a c y adherence
t e s t s and s t a b i l i t y
d i s p l a y s the r e s u l t s
into
of this material
t e s t s were p e r f o r m e d .
of the adherence
tests.
The
F i g . 11 reaction of
t h e c e m e n t a n d t h e b r i c k i s e v i d e n c e d n o t o n l y by t h e p h y s i c a l o b s e r v a t i o n o f t h e i n t e r f a c e b u t a l s o by t h e c h e m i c a l tion profile. almost
One
should also expect this behaviour
a n y b r i c k , a g a i n due
f1uoride
employed.
to the high f l u x i n g
composiwith
a b i l i t y of the
35 The alumina
same s e r i e s o f s t a b i l i t y
cement A l u n d u m 1139.
t e s t s was
Comparing
performed
F i g s . 12 a n d
13
can see t h a t t h e r e i s no s i g n i f i c a n t d i f f e r e n c e i n consumption
with e i t h e r of the cements,
cement does
not have lower s t a b i l i t y
alumina
with one
carbon
indicating that
than
the
the
original
cement used to produce i t . To f u r t h e r i n v e s t i g a t e t h e p o s s i b i l i t i e s
f 1 u o r i d e - m i n e r a 1 i z e d cements,
of the
i t was
d e c i d e d t o t r y MgF^,
with
the aim o f p r o d u c i n g m a g n e s i a - a l u m i n a
spinel, instead of
calcium-aluminates. F i n e l y ground 1139
MgF^
a n d MgO
were mixed
i n the p r o p o r t i o n s 85% A l 0 / 1 4 % 2
f i r e d at 1300°C, the f l u o r i d e .
i.e., slightly
The
mechanical
MgF /l%
3
MgO
2
Alundum (SP2)
p r o p e r t i e s o b t a i n e d w e r e much and o f t h e c a l c i u m - f l u o r i d e
F i g . 14 s h o w s t h e m i c r o s t r u c t u r e o f
produced.
original
cement) while the i n t e r g r a n u 1 ar m a t e r i a l i s a
alumina
and a l u m i n a .
were
a r e as good
mixture only
consumption
tests
as t h e v a l u e s f o r p u r e
cement, w i t h i n the e x p e r i m e n t a l v a r i a t i o n s . It i s c l e a r then
f a v o u r a b l e f o r use
under
that this VIM
In o r d e r t o i m p r o v e lignin
the
present.
15 s h o w s t h e r e s u l t s o f c a r b o n
in t h i s m a t e r i a l , which
(from
In t h e X - R a y p o w d e r d i f f r a c t i o n ,
and s p i n e l peaks Fig.
alumina
l a r g e g r a i n s are Al^O^
the
material
of spinel
The
and
above the m e l t i n g p o i n t of
s u p e r i o r t o t h o s e o f A l u n d u m 1139 cement (CAF).
with
s u l p h i t e was
added
composition would
be h i g h l y
conditions (at least for steels). its plasticity
and c o l d
as a 1 0 % s o l u t i o n i n w a t e r ,
adherence, mixed
36 with the cement powders. excellent results. was
The
cold adherence
In m o s t t e s t s t h e b r i c k / m o r t a r i n t e r f a c e
s t r o n g e r than the mortar
f i r e d m a t e r i a l was
i t s e l f , and
the s t r u c t u r e of the
n o t a l t e r e d by t h i s a d d i t i o n .
Observing
the f i r e d
i n t e r f a c e , i t was
t h i s cement r e a c t s with the spinel, phase phase
t e s t s gave
noticed that
and w i t h t h e
binding
o f t h e p e r i c l a s e g r a i n s i n t h e Magnel b r i c k , and
t o a l e s s e r e x t e n t w i t h t h e MgO the r e s u l t s
itself
( F i g . 16).
and c a l c i u m a l u r n i n a t e s , M g F
2
MgO
and s p i n e l w i t h t h e e x c e s s
alumina)
producing highly reactive i t was
decided that,
i n o r d e r t o p r o m o t e m o r e r e a c t i o n w i t h t h e MgO
particles,
A l F ^ s h o u l d be u s e d t o f o r m s p i n e l w i t h t h e MgO T h i s c o u l d be d o n e i n two w a y s :
the Al 0 /MgF /MgO mixture 2
3
2
percentage and A 1 0 2
3
Analysing
a c h i e v e d p r e v i o u s l y (CaF^ p r o d u c i n g h i g h l y r e a c t i v e
CaO
Magnel.
reacts
and
The
By a d d i n g
used, mixed
f o r m e r was
b e t w e e n Magnel: b r i c k s .
lignin
mixture
s u l p h i t e s o l u t i o n and
A g a i n , the c o l d s t r e n g t h and
i t y were v e r y good, i n d i c a t i n g t h a t cements w i t h o u t achieve these p r o p e r t i e s .
The
to the s h o r t r e a c t i o n time
The with alumina
Low
Silica
given to both
Phosphate
Bonded
samples
cements,
was spread
silica
can
however,
probably
due
(2 h r s . ) .
Cement
o t h e r component e x t e n s i v e l y used i n to produce
3
plastic-
binding characteristics
d i d i n o t d i f f e r s u b s t a n t i a l l y from t h o s e o f SP2,
3.1.4
2
s e l e c t e d as b e i n g e a s i e r
3
w i t h t h e 10%
A1 0
based m i x t u r e , w i t h Al
t o do a n d a 7 0 % A l 0 / 1 6 % A l F g / 1 3 % "MgF^/1% MgO 2
from
A l t o
r e d u c i n g the i n i t i a l
o r , by d e s i g n i n g an MgO additions.
grains
connection
is phosphoric acid with
or
37 without s i l i c a .
In o r d e r t o i n v e s t i g a t e t h e b e h a v i o u r o f t h e
p h o s p h a t e b o n d , t e s t s w e r e p e r f o r m e d w i t h T a y l o r 341 It
cement.
i s b e l i e v e d that in a phosphate bonded alumina
m i x t u r e , A1H ^ ( P O ^ ) ^ • 3 ^ 0 ,
the hydrated aluminum-phosphate
phase i s the major phase produced i n the b i n d e r system and, upon
firing,
aluminum
orthophosphate (AlPO^), which in i s o -
s t r u c t u r a l w i t h s i l i c a , w o u l d be p r e s e n t .
The o r t h o p h o s p h a t e
is b e l i e v e d to decompose
reaction
a c c o r d i n g t o the
2 A 1 P 0 .4 = A 1 ,do0 , + P CL. do 0
f o r m i n g A I Z C uo w i t h t n e v o l a t i l i z a t i o n 0
agreement, however,
o f P J2 r .5
T h e r e i s no
c o n c e r n i n g the exact temperature of the
d e c o m p o s i t i o n , K h o r o s h a v i n , e t a l (72) r e p o r t i n g i t s s t a r t at to,
1 4 6 0 - 1 4 8 0 ° C and O'Hara e t a l (71) s t a t i n g t h a t i t i s s t a b l e at l e a s t , 1760°C.
I t i s c l e a r however, that since
i s an o x i d e e v e n l e s s s t a b l e t h a n S i O ^ ( for
P2U,-,"as
compared
process in question partial of
A G
ig73K
=
P °5 2
"55KCa1/mol0
t o - 1 2 5 K C a l / m o l 0^ f o r S i C ^ ) a n d a s t h e
i s t o o c c u r u n d e r vacuum
p r e s s u r e o f ^2^5'
o n e
S n
(and hence
low
° u l d expect the decomposition
t h e b o n d t o be e n h a n c e d u n d e r v a c u u m
induction melting
of
stee1 . Fig. crucibles.
17 s h o w s t h e c a r b o n c o n s u m p t i o n i n T a y l o r
One c a n s e e t h a t a l t h o u g h t h e y a r e h i g h e r t h a n
those i n the A l u m i n a cement Alundum not of
341
pronounced.
The main
1139, the d i f f e r e n c e i s
reasons f o r the acceptable b e h a v i o r
t h i s c e m e n t a r e t o be f o u n d i n i t s r e l a t i v e l y
c o n t e n t , t h e a b s e n c e o f SiO^
low
and i t s e x c e l l e n t g r a i n
s u r f a c e q u a l i t y and s t r e n g t h as c o m p a r e d
?2®5
sizing,
to the c o r r e s p o n d i n g
2
38 p r o p e r t i e s o f Alundum 1139. interface
f o r a 15 m i n u t e
Observing the m e t a l / r e f r a c t o r y steel-test in this material (Fig.
1 8 ) , one n o t i c e s no a l t e r a t i o n Although
in the s t r u c t u r e of the
some g r a i n s c a n be s e e n
and a d e p l e t i o n i n p h o s p h o r o u s
cement.
t o be g o i n g i n t o t h e
melt
c a n be n o t i c e d c l o s e t o
the
i n t e r f a c e , t h i s seems to have l i t t l e
o r n o e f f e c t on
the
strength of the m a t e r i a l . 3.1.5
Silica
C o n t a i n i n g Phosphate
Bonded
T h e m o s t w i d e l y u s e d c e m e n t i n VIM Coralbond,
a silica
c o n t a i n i n g phosphate
addition of s i l i c a
and P 0 o
c
f o r m an e u t e c t i c a t 9 0 0 ° C ,
b
c
e u t e c t i c in the high alumina at
1200°C.
Indeed,
p l a s t i c , adherent good
furnaces is
bonded cement.
i s p r o b a b l y made t o i m p r o v e
c o l d s t r e n g t h and to e n h a n c e i t s f l u x i n g
one
cold strength.
any
I t i s hence
The
plasticity,
ability, since
while the lowest
side of the A l f t ^ ^ t ^ ^
observes
to almost
Cement
melting binary is
t h a t t h i s cement i s s u r f a c e , and
silica
extremely
develops
a very
a very d e s i r a b l e cement,
from
t h e s t a n d p o i n t o f i t s a c t u a l u t i l i z a t i o n b y b r i c k l a y e r s on
the
s h o p f l.oor. I t m u s t be k e p t i n m i n d , h o w e v e r , t h a t a l t h o u g h p r o p e r t i e s are important p r o p e r t i e s t o be t a k e n
these
(and a r e , i n s e v e r a l c a s e s , the
i n a c c o u n t when s e l e c t i n g a
mortar)
they are not the only important p r o p e r t i e s of a mortar. t h e c a s e o f VIM
or other processes
i s i m p o r t a n t , one of
in which
should look i n i t i a l l y
In
refractory attack
at the c o m p a t i b i l i t y
the mortar with the c o n d i t i o n s of the process.
case, c o m p a t i b i l i t y with high carbon
only
In
our
a c t i v i t y or very
low
39 oxygen a c t i v i t y metals
under
this
can one
c o n d i t i o n i s met,
application properties final
vacuum i s e s s e n t i a l .
and s t r e n g t h o f a j o i n t b e f o r e f i r i n g . i n t h e c a s e o f VIM
after
proceed to t e s t the ease
I n o t h e r w o r d s , i t may
of
These
a r e n o t as i m p o r t a n t as
q u a l i t y of the m a t e r i a l produced
lining.
Only
and the l i f e
the
of the
pay t o use a cement t h a t w i l l
n o t be a s e a s y t o t r o w e l l o r t o s p r e a d , a n d w i l l
not
produce
as s t r o n g a c o l d j o i n t - - i n o r d e r t o a c h i e v e l o n g e r l i n i n g
life
and b e t t e r m a t e r i a l q u a l i t y . In
a l l steel
tests with Coralbond, although the
w e r e w e l l d r i e d a n d p r e f i r e d a t 900-°G v a r i o u s d e g r e e s b o i l i n g were o b s e r v e d , i n d i c a t i n g interaction. tion
is
f o r carbon
i n C o r a l b o n d as a f u n c t i o n o f t h e s q u a r e
good s t r a i g h t - l i n e
(mullite
consump-
root of time,
cement).
The
P2O5)
i n t h e p o r e s o f t h e r e f r a c t o r y as
It i s i n t e r e s t i n g to note t h a t both
and T a s i l - X p r e s e n t t h e same d e c o m p o s i t i o n
(and
proposed
by M a s s a n d A b r a t i s ( 7 3 ) f o r t h e r e d u c t i o n o f m u l l i t e Fe-C m e l t s .
very
f i t shows t h a t i n b o t h c a s e s the r e a c t i o n
c o n t r o l l e d by d i f f u s i o n , p r o b a b l y o f S i O a n d CO^
maybe o f
of
a strong metal/refractory
F i g . 19 s h o w s t h e r e s u l t s
together with those f o r Tasil-X
samples
by
Coralbond
r a t e i n the. t e s t s
performed. When' (Fig.
Cora 1 bond/meta 1 i s observed
2 0 ) , one n o t i c e s t h e c h a r a c t e r i s t i c s i l i c a
a l s o the t o t a l to
the i n t e r f a c e
decomposition
of tne bond.
note t h a t the bond decomposes
d e p l e t i o n and
It i s interesting
(and the phosphorous
drops) at a c o n s t a n t d i s t a n c e from the working
content
f a c e ( F i g . 21)
40 while the s i l i c a
boundary i s not as linear.
This probably
s u g g e s t s t h a t the phosphate bond decomposes by thermal p r e s s u r e e f f e c t s , w i t h t h e v o l a t i I i z a t i o n o f ^2^5' interface
t n e
n
'9 t
temperature.
It i s a l s o c l e a r again in t h i s case t h a t the p e n e t r a t e s i n t o the p o r o s i t y l e f t by the reduced and
s t r a i
i n d i c a t i n g the isotherm: c o r r e s p o n d i n g t o the
decomposition
(Si02
and
P
2^5^»
anc
*
t n a t
t n e
components
a l t e r e d l a y e r has a much
d e n s i t y than the bulk o f the r e f r a c t o r y .
metal
lower
Evidence of the
cement as source of n o n - m e t a l l i c i n c l u s i o n s
(with or without
entrapped metal) is presented in Fig. 22. I t i s c l e a r from t h e s e o b s e r v a t i o n s t h a t the t i o n o f s i l i c a / p h o s p h a t e bond makes C o r a l b o n d able, as f a r as chemical s t a b i l i t y VIM
combina-
less than
i s concerned,
desir-
f o r use i n
furnaces. 3.1.6
Summary o f S t e e l T e s t s
The
very negative e f f e c t
of s i l i c a with or without
other oxides o ras a 'lower a c t i v i t y been o b s e r v e d . mullite Al
Although
unexpected,
1
form i n a compound the r e s u l t s with
the
cement seemed t o be s u p e r i o r t o t h o s e o f t h e 10%
c e m e n t - - T a y 1 o r 320.
T h i s t y p e o f b e h a v i o u r was
observed in w e t t a b i 1 i t y s t u d i e s performed (74).
has
The
SiO^/
also
by Sveshkov et a l .
reason f o r t h i s behaviour perhaps
can be f o u n d i n
the f a c t t h a t the phases p r e s e n t i n the h i g h e r alumina
cement
are not those p r e d i c t e d by e q u i l i b r i u m c o n s i d e r a t i o n s , s i n c e after firing
i t s b e h a v i o u r was
improved.
I n any e v e n t ,
cements proved u n s u i t a b l e f o r the a p p l i c a t i o n
both
in question
and
41
no f u r t h e r
i n v e s t i g a t i o n was
The
possibility
o f s i l i c a , was
promote bonding The
of using
shown, s i n c e
of the basic alumina
t h e y do n o t r e d u c e
reaction,
the corrosion
constituents
inclusions dissolved
stability do
c h a r a c t e r i s t i c s of the r e f r a c t o r i e s to the e x t e n t of the
although this factor alone
could
are
metal not
prevent
reaction.
In s e v e r a l tory
the
instead
bricks.
indeed important with respect ceramic
f l u o r i d e s as f l u x e s ,
cement e m p l o y e d i n the t e s t s and
to the
physical
undertaken.
cases the c o r r o s i o n was
observed
in the metal
to cause
w h i c h may
o r may
d u r i n g the remaining part
the s t a g e o f f o r m a t i o n and s i z e and
o f one
of the
the formation n o t be
refracof
completely
of the heat depending composition, etc.
on
42 3.2
T e s t s U s i n g X-750 S u p e r a l l o y S i n c e i t soon
became a p p a r e n t
b e t w e e n X-750 ( a n d p r o b a b l y the r e f r a c t o r i e s
under
any
t h a t the i n t e r a c t i o n s
o t h e r low-C s u p e r a l l o y )
vacuum were not enough to cause
easily
d e t e c t a b l e v a r i a t i o n i n any o f t h e a l l o y i n g
i t was
decided instead to concentrate
a l t e r a t i o n s at the meta1/refractory
elements,
interface.
In a d d i t i o n , caused
e i t h e r by t h e d i s s o l u t i o n o f r e f r a c t o r y o x i d e s o r by
Due
to the r e l a t i v e l y
t i t a n i u m and
any
a t t e n t i o n on the a c t u a l
the v a r i a t i o n of the oxygen content of the a l l o y ,
m e n t o f r e f r a c t o r y i n c l u s i o n s was
and
entrap-
to be s t u d i e d .
high percentage
of
chromium in t h i s a l l o y , a l l of which
aluminum have h i g h l y
n e g a t i v e i n t e r a c t i o n c o e f f i c i e n t s w i t h o x y g e n i n Ni a l l o y s (ej
1
= -210, e £
expect
r
= -38.6, e j
a relatively
equi1ibrium
1
= -70 a t
1873°K (75)) o n e
high oxygen content in t h i s a l l o y
with , f o r example, alumina.
This is
should
in
clearly
s h o w n i n F i g . 23, w h e r e t h e o x y g e n c o n t e n t i n e q u i l i b r i u m with alumina percentage
i s shown, f o r a N i - A l a l l o y ,
of aluminum.
lOppm oxygen range superalloys
r e a d i l y see t h a t the
are r a t h e r d i s p l a c e d from e q u i l i b r i u m and to the m e l t i n g p r a c t i c e of
d e o x i d a t i o n with carbon
time
can
usual
of values a c h i e v e d in the p r o d u c t i o n
o n l y b e o b t a i n e d due
elements
One
asa f u n c t i o n of
and t a p p i n g .
can
initial
followed bya d d i t i o n of r e a c t i v e I t i s c l e a r t h a t the
longer the
a f t e r the a d d i t i o n o f the more r e a c t i v e e l e m e n t s
and A l ) t h e c l o s e r the s y s t e m the most s t a b l e mixture
of
of
will
oxides.
approach
holding (as Ti
e q u i l i b r i u m with
43 I t m u s t be s t r e s s e d t h a t i n t h i s quite pronounced equilibria present
deviation
case t h e r e i s a
from the simple d e o x i d a t i o n
o b s e r v e d when s m a l l a m o u n t s o f d e o x i d a n t a r e
(aluminum
deoxidation of steel , for instance).
those c a s e s , the aluminum
In
c o n c e n t r a t i o n i s s m a l l , and i n
the e x p r e s s i o n f o r the a c t i v i t y
c o e f f i c i e n t of oxygen,
fo
n log fo = e°wt%0 +
I e^ w t % i
Al the term c o r r e s p o n d i n g to e ence
between
of oxygen
wt%Al
Q
t h e H e n r i an a c t i v i t y
i s also small.
The
and t h e w e i g h t
differ-
percentage
c a n be n e g l e c t e d , a s s h o w n i n F i g . 23 up t o
a p p r o x i m a t e l y 0.08% t i o n s , one
Al in N i c k e l .
In t h i s r a n g e o f
can use a r e l a t i o n s h i p o f t h e wt%0 wt%Al = Ka 3
composi-
type
2
A ]
0
or 3 l o g wt%0
+ 2 log wt%Al
= K'loga.,
n U
2 3 a n d s h o w t h a t l o g wt%,0
i s a l i n e a r f u n c t i o n of l o g wt%Al
As t h e a l u m i n u m however, h
Q
content of the a l l o y i n c r e a s e s ,
the term e'^wt%Al
d e p a r t s from wt%0, h
o
.
,
c a n n o t be n e g l e c t e d a n y m o r e
a c c o r d i n g to the
= f wt%0 o
and
relationship
. 3 2
While the r e l a t i o n s h i p
h h^^ Q
= K is still
valid
for
a f i x e d a l u m i n a a c t i v i t y , a s s h o w n by t h e e x t e n s i o n o f t h e activity
straight
not l i n e a r l y
line
i n F i g . 23, the w e i g h t p e r c e n t a g e s
r e l a t e d a n y m o r e , due t o t h e i n t e r a c t i o n
are
of the
44
two s o l u t e s i n t h e a l l o y , w h i c h simple Henrian
causes departure from
the
behaviour.
Assuming
t h a t the only s i g n i f i c a n t
i s t h a t c a u s e d b y a l u m i n u m on o x y g e n , o f t h e two e l e m e n t s
interaction
the weight
effect
percentages
c a n be r e l a t e d b y t h e f o l l o w i n g
expres-
s i on h
h
=
o Al
31og
K
a
Al 0 2
h
Q
+ 21og
A ]
=
K'
+ 3 ( l o g fo + l o g wt%0)
21og w t % A l
+ 3e^vit%M
Q
+ 31og wt%0
(1) shows t h a t l o g wt%0
function of log wt%Al Al term 3e
h
21og w t % A l
Equation
the
3
wt%Al
K'
= =
i s not a
(1)
K'
linear
, a n d c a n o n l y be a s s u m e d t o be s o w h e n
i s n e g l i g i b l e , which
only happens f o r small
c o n c e n t r a t i o n s of aluminum. I t i s t h e n o b v i o u s why
the r e f r a c t o r y / m e t a l i n t e r f a c e
becomes i m p o r t a n t i n the system, s i n c e i t w i l l thermodynamics
control
the
o f t h e p r o c e s s (by t h e compound f o r m e d ,
and
hence e x p o s e d to t h e m e t a l ) and t h e k i n e t i c s (by
i t s physical
alloy will
characteristics).
of the process,
The oxygen
content o f the
i n d i c a t e the approach o f the system to e q u i l i b r i u m ,
a n d , i f a c o n s t a n t t i m e i s t a k e n as a b a s i s f o r c o m p a r i s o n , the
most s a t i s f a c t o r y
refractory
from t h i s s t a n d p o i n t .
T a b l e 7 shows the oxygen
value found in samples
X - 7 5 0 h e l d f o r 15 m i n u t e s refractory materials.
at 1500°C
in crucibles of
It i s e v i d e n t t h a t the
of
different
refractories
45 composed o f MgO-A^O^ s p i n e l and 8 5 % A l 0 / 1 4 % z
oxygen
MgF /l%
3
and e i t h e r A l ^ O ^ o r M g O
MgO ( S P 2 ) )
2
values amongst t h e samples
(Alumina
present the lowest
f o l l o w e d b y T a y l o r 341
P e r i b o n d
b o n d e d by 4.5% P ° 5 ^ '
(Magnel
2
M
( 9°
w i t n
S i
0 )> 2
A l u n d u m 1 1 3 9 , t h e c a 1 c i um f 1 t i o r i d e - a 1 umi n a c e m e n t ( C A F ) a n d last,
Coralbond. From t h e s e d a t a i t i s c l e a r t h a t t h e most a d v i s a b l e
r e f r a c t o r y f o r h o l d i n g I n c o n e l X-750 would a high percentage stability
of spinel
oxides, the ideal
T a y l o r 341 p e r f o r m e d h i g h e r than
and as l i t t l e as p o s s i b l e lowcombination
7 ppm i n i t i a l
being
w e l l w i t h an o x y g e n
that of the spinel
hand, Coralbond
Magnel/SP2.
c o n t e n t n o t much
based m a t e r i a l s .
r e a c h e d 6 0 ppm o x y g e n oxygen).
be one c o n t a i n i n g
On t h e o t h e r
i n 15 m i n u t e s
(from
S i n c e i t s main c h e m i c a l d i f f e r e n c e
from T a y l o r 341 i s i n t h e s i l i c a
content and the s l i g h t l y
h i g h e r P 0 g > i t c a n be c o n c l u d e d t h a t t h e p r e s e n c e
of these
2
o x i d e s makes C o r a l b o n d superalloys.
In a real
n e v e r be o b s e r v e d , surface/volume concerned due
t h e l e a s t s u i t a b l e cement f o r m e l t i n g f u r n a c e those h i g h oxygen
r a t i o ; however, as f a r as cement a t t a c k i s
t othe almost
constant
be t h e same o r e v e n low oxygen
pronounced,
p o t e n t i a l i n the metal,
in silica
i n t h i s i n s t a n c e , some e f f e c t on t h e s t a b i l i t y , presented a significantly comparable
more
high d r i vi ng- f o rce f o r the d i s s o l u t i o n . I t
can a l s o be n o t i c e d t h a t t h e v a r i a t i o n
for
will
o f c o u r s e , due t o t h e much more f a v o u r a b l e
the results will
and c o n s e q u e n t
values
silica
lower oxygen
contents.
superalloy melting, the i n i t i a l
activity has, since
value than
Peribond
Coralbond,
It i s unfortunate that in stage o fa heat
involves
46 carbon
d e o x i d a t i o n and hence
activity
o f l a r g e p e r i c l a s e g r a i n s b o n d e d by s m a l l e r g r a i n s , the working
areas exposed Fig.
to the
magnesia
h a v e b o t h MgO
and
in
MgO'Al 0 2
3
metal.
24 s h o w s a c r o s s s e c t i o n o f t h e i n t e r f a c e o f a
from the m e t a l .
The
observed
a n d t h e b r i c k i n F i g . 24 i s due a n d , on t h e r i g h t The
gap
h a n d s i d e , one
i n t e r f a c e when
between
to shrinkage can o b s e r v e
probably spinel. l a y e r would
1)
i n Mg
at
this
and Al , this
from the melt, d e s c r i b e d in a
by t h e f o l l o w i n g p r o c e s s e s :
Dissolution of s i l i c a
from the b i n d i n g phase
t h e p e r i c l a s e g r a i n , due
t o t h e v e r y low o x y g e n
the m e l t and
stability:
low s i l i c a Si0
metal
a periclase
The m e c h a n i s m f o r the f o r m a t i o n o f
be p r e c i p i t a t i o n
Al,Ni alloy
the
during cooling
p i e c e s of oxide a d h e r i n g to the metal
p o i n t i n t h e i n t e r f a c e a r e o f an o x i d e r i c h
2
of
p o t e n t i a l in
= S_i + 2 0
This process will cipitation
X-750
face of a c r u c i b l e d r i l l e d
a f t e r u s e , w h i l e F i g . 25 d e p i c t s t h i s
detached
1%
Magnel
S i n c e t h e M a g n e l b r i c k i s com-
a b r i c k with a diamond d r i l l w i l l
grain.
Peribond.
the meta 1 / r e f r a c t o r y i n t e r f a c e o f the
in this m a t e r i a l .
and s p i n e l
sample
silica
one c a n r a t i o n a l i z e t h e p r o c e s s e s o c c u r r i n g w h e n
is melted posed
to low
c o m p o u n d s s u c h as t h o s e p r o b a b l y p r e s e n t i n Observing
sample
s e v e r e a t t a c k even
c o n t r i b u t e w i t h oxygen
of the most s t a b l e o x i d e s .
f o r the
pre-
47 2) activity
D i s s o l u t i o n o f MgO
coefficient
reactive elements MgO 3)
due
in the melt
t o t h e v e r y low
a f t e r the
Formation
o f s p i n e l o v e r t h e MgO
(3a) 3A i n F i g . 26
o f s p i n e l i n e q u i l i b r i u m w i t h MgO,
reaction of
= Mg0-Al 0 2
s h o w n by l i n e 3B i n F i g . 2 6 . d e s c r i b e d by e q u a t i o n
(3b)
a thermodynamic viewpoint, any
by p r e c i p i t a t i o n
(3b)
3
I t i s c l e a r t h a t the
process
s h o u l d be t h e m o s t f a v o u r a b l e since line
3B w i l l
always
increases.
contents
t o be e x p e c t e d
T h i s i s due
o f t h e p r o c e s s , MgO
may
to the very
low
100
ppm
(3b) o v e r
be a d d e d i n a l a t t e r
step
b e c o m e t h e m o s t s t a b l e o x i d e , due
to
alloys.
(1) and t h e t h e r m o d y n a m i c a d v a n t a g e
( 3 a ) , f a v o u r r e a c t i o n (3b)
r e s p o n s i b l e f o r the formation One
process.
f a c t t h a t e n o u g h o x y g e n s h o u l d be a v a i l a b l e
l o c a l l y from process
probably
of
magnesium
t h e v e r y s t r o n g i n t e r a c t i o n o f Mg w i t h 0 i n N i c k e l
process
be
at t h i s stage of the m e l t i n g
in amounts over
The
from
o t h e r i n F i g . 26 as t h e o x y g e n c o n t e n t
the melt
Mg
on
A^O^,
2AJ_ + 30 + MgO
Should
grains either
3
a c c o r d i n g t o t h e e q u i l i b r i u m f i x e d by l i n e
before
melt:
melt, 2
reached
the
= Mg_ + 0
Mg_ + 2AJ_ + 40 = M g 0 - A l 0
and
addition of
a s s h o w n i n F i g . 26 f o r 1% A l i n t h e
d i r e c t l y p r e c i p i t a t e d from the
formation
oxygen
as t h e
of
one
of the s p i n e l l a y e r .
m u s t a l s o be a w a r e o f p o s s i b l e k i n e t i c d i f f e r e n c e s
between the p r e c i p i t a t i o n of alumina
or t h a t of s p i n e l , which
48 i n v o l v e more s p e c i e s and o f t h e i n t e r s o l u b i 1 i t i e s various oxides which
may
n o t be n e g l i g i b l e
of
at the
these
tempera-
tures in question. These essentially oxygen
r e a c t i o n s would all-spinel
lining
have the e f f e c t of p r o d u c i n g (or brick) with
e q u i l i b r i u m c o n c e n t r a t i o n which
f o r t h e h o l d i n g o f v e r y low oxygen a l s o a good for
evidence
of the s u i t a b i l i t y
around
3
the alumina
This is
behave almost
When one
produces
as p u r e
to understand
a complete
firing
sheath of
MgO-
s p i n e l , and hence w i t h X-750
A l u n d u m 1139
are e s s e n t i a l l y
and
Coralbond,
for their different
the
behaviour.
observ-
In
and b o t h
Mg
for spinel
precipitation.
One
oxide mixture.
In t h e c a s e i n q u e s t i o n , t h i s p r o v e d
mixture
the
role in
a b s e n t , t h e r e i s no chance
must then
best
alloy.
t h i s c a s e , s i n c e a l l cements are h i g h in a l u m i n a , a n d MgO
cement
achieve the
a t i o n o f t h e i n t e r f a c e a g a i n p l a y s an i m p o r t a n t e l u c i d a t i n g the causes
the
Since the
compares the l a r g e d i f f e r e n c e between
v a l u e s f o r T a y l o r 341,
look f o r the next most s t a b l e t o be
a
of chromium oxides with the oxides of the r e f r a c t o r y
a n d some t r a c e s o f o x i d e s o f o t h e r a l l o y i n g e l e m e n t s
2mm
linings
grains, i t is clear that this
v a l u e s f o r r e s i d u a l oxygen
Ti).
low
favourable
of a l l spinel
s h o w n by t h e c e m e n t S P 2 .
of the MgF^/A^Og mixture
will
be
activity metals.
on t h i s r a t i o n a l e i t i s e a s y
excellent stability
2
relatively
VIM. Based
A1 0
would
an
Alundum 1139, deep, behind
(such
as
f o r i n s t a n c e , p r e s e n t e d a pink l a y e r , about
the i n t e r f a c e , r i c h
in chromium.
This
agrees
w i t h t h e o b s e r v a t i o n s o f S p e n d e l o w ( 4 0 ) when m e l t i n g H a s t e l l o y
49 235
in
alumina
was
greenish,
shown i n
Fig.
crucibles. thin
and v e r y
27.
This
and chromium o x i d e the
case
dense,
of higher
the p a r e n t
crucible.
more open
structure
the
case
precludes
the is
case
a higher
and i m p e r v i o u s
(and
also
P).
minimum p e r c e n t a g e
alumina
(10 ) 5
cussed Al 0 2
3
as
it
the
to the melt 1139,
formation
'sees',
the
contains
The s u p e r a l l o y
alone
mixtures
to a c t as
is
dense
refractory,
essentially,
A1 0^, 2
i n t e r f a c i a l layer
a rather large in
and t h i s
question
contains
element i s (a . c
n
Q
a continuous
t o u n i t y , one s h o u l d source
In
formed of a
a mediocre /h
/ h ^ hg = 4.5 (10 ) ( 3) ) . 13
f t l
amount
9
.h si 0 As
the a c t i v i t y c o e f f i c i e n t of SiC^
close
than
however,
of a
i n t o the
in N i c k e l a l l o y s
compared t o a
before, since
Ti)
a real
o1 U£
6.18
in
some P and
as
o f Alundum
though
of s i l i c o n
d e o x i d a n t even when
as
oxygen e q u i l i b r i u m c o n c e n t r a t i o n .
o f C o r a l b o n d , even
dense
silica
seeks
the metal
can d i f f u s e
stages,
of
also
s t a b i l i t y with respect
the m e t a l , a t a l l
and hence
impervious,
r e a c t i o n , a l l o w i n g a lower
to surround
In
341
c o n c e n t r a t i o n than
(and c o n t a i n i n g
l a y e r and t h e chromium o x i d e while
higher
l i m i t s the e x t e n t of the
'crucible'
almost
l a y e r , composed m a i n l y
1139
oxygen p o t e n t i a l phase
its
l a y e r formed i n T a y l o r
i n somewhat
o f Alundum
probably
The
disin
expect t h i s
o f oxygen t o t h e m e t a l .
SiC^/ silica
50
CHAPTER 4 O B S E R V A T I O N S OF I N D U S T R I A L
SAMPLES
In o r d e r t o r e l a t e t h e e x p e r i m e n t a l a c t u a l VIM p r a c t i c e s and t o v e r i f y
r e s u l t s with the
t h e v a l i d i t y o f some o f
t h e o b s e r v a t i o n s made i n t h e t h e o r e t i c a l r e v i e w , from m a t e r i a l s used examined. de-S
i n o r produced
some
by VIM f u r n a c e s
were
These c o n s i s t o f a sample o f s l a g produced
treatment,
samples
of macro-inclusions
s u p e r a l l o y s ; and a Magnel b r i c k used
4.1
failed
i n VIM
in nickel
in a furnace
lining
prematurely.
S a m p l e o f S l a g U s e d i n VIM d e - S
Treatment
In o r d e r t o d e s u l p h u r i z e N i - b a s e
alloys, i t is a
k n o w n p r a c t i c e t o mak.e c a l c i u m o x i d e a d d i t i o n s t o t h e Although
i n most heats
t h e r e i s no problem,
violent slagging occurs analysed
base
melting
s t e e l s a n d n i c k e l - b a s e s u p e r a l l o y s , a n d a rammed VIM which
samples
i n some c a s e s
due t o r e f r a c t o r y a t t a c k .
i s from one o f t h o s e
charge. a
The sample
heats.
F i g s . 28 a n d 29 show t h e c h a r a c t e r i s t i c m i c r o s t r u c t u r e o f t h e s l a g , i n t h e SEM. of calcium aluminates,
The matrix
i s composed e s s e n t i a l l y
w i t h some o t h e r o x i d e s , a s s h o w n b y
t h e MgKa a n d A l K a p h o t o g r a p h s
i n F i g . 29, s e v e r a l small
o x i d e s u l p h i d e i n c l u s i o n s a n d l a r g e MgO
grains.
mixed-
51 The significant adequacy
f i r s t o b s e r v a t i o n t o be made i s r e l a t e d t o s u l p h u r c o n t e n t o f the s l a g , c o n f i r m i n g
of this treatment
the l a r g e magnesia
as a de-S
treatment.
However,
tory used, which
was
It i s c l e a r then
t h a t , a p a r t from d e s u l p h u r i z i n g the
magnesia
a d d i t i o n a l s o f l u x e s the b i n d i n g phase the c a l c i u m aluminates The
which
rammed
o f the l i n i n g
c a l c i u m o x i d e has been
the low m e l t i n g m i x t u r e s These,
combined
lime producing
o f MgO,
spinel
treatments,
absorbed and
to
calcium
produce aluminates.
w i t h the a b s o r p t i o n o f o x i d e s o f elements
as Z r and T i f r o m in t h i s
lining.
c a n be p o s s i b l y
a t t r i b u t e d to the c u m u l a t i v e e f f e c t o f v a r i o u s sufficient
refrac-
c o n s t i t u t e the bulk of the s l a g .
f a c t t h a t t h e f l u x i n g o c c u r s i n some h e a t s
until
the
g r a i n s c l e a r l y o r i g i n a t e from the a spine1-bonded
the
the s k u l l , have a very h i g h f l u x i n g
ability
system. It i s i n t e r e s t i n g to compare these o b s e r v a t i o n s
t h e c o m m e n t s by W a r d e t a l . ( 5 5 ) , w h e n e m p l o y i n g desu1phurization Magnesia
linings.
treatment
in e i t n e r Magnesia
He o b s e r v e d
a f t e r the t r e a t m e n t s Magnesia
such
definite
with
a lime
S p i n e l or
s w e l l i n g i n the
pure former
w h i l e no a l t e r a t i o n o c c u r r e d i n t h e
l i n i n g s , p r o b a b l y due
to the absence
of
alumina.
52 4 .2
Magnel
Brick
A sample of Magnel b r i c k from a l a r g e VIM
furnace
was
the working
lining
e x a m i n e d , both m a c r o - and
of
microscopic-
al l y . 4.2.1
Macroscopic
Metal was
f i n i n g was
the reason
still
Observation
why
the
found
i n the C o r a l b o n d
l i n i n g was
removed.
effort. i n VIM
This confirms
the o b s e r v a t i o n s
t h a t the w o r s t
b r i c k l i n i n g s i s at the working
of metal
also observed
( F i g . 30)
face
is
i n t o the Magnel b r i c k i t s e l f .
o f the r e g i o n c l o s e to the w o r k i n g 4.2.2
Microscopic
aluminates).
In o r d e r t o s t u d y observations
of calcium
metal
i n the r e f r a c t o r y ,
one
the mortar
can
and
aluminates
was
found
also expect
t o be
In a d d i t i o n , a s F i g s . 3 2
and
low
the
by w h a t a p p e a r s
bricks
The
pre-
rather intriguing, CaO
content
33 s h o w , t h e m e t a l
seems
i n t o the r e f r a c t o r y p a r t i c u l a r l y v i a these
This occurs
calcium
j o i n t s are
i n c l u s i o n content of the melt.
s i n c e Magnel i s s u p p o s e d to have a very
f i n d i t s way
w e r e made
i n c l u s i o n s ( s p i n e l , alumina
the weakest l i n k i n the system,
the
Observation
T h i s shows t h a t a l t h o u g h
to c o n t r i b u t e t o the
penetration
face.
F i g . 31 s h o w s some e n t r a p p e d which a c t u a l l y contains
problem
joints.
a considerable
mechanism of t h i s process, m i c r o s c o p i c
ates.
there
a c o n s i d e r a b l e w a s t e o f m a t e r i a l and b r i c k l a y i n g
One
6).
Since
which
quite a substantial thickness of brick a v a i l a b l e , this
represents
sence
joints,
t o be m e l t i n g
and
(Table to alumin-
dissolu-
53 tion
( F i g . 3 2 ) , o r p o s s i b l y by f l u x i n g w i t h
Ti0
or Zr0
2
2
(Fig. 33). The
calcium
aluminates
phase i n the p e r i c l a s e grains the
brick.
occur
a s an
intergranular
close to the working
When o n e o b s e r v e s t h e p e r i c l a s e g r a i n s
face o f i n unused
Magnel b r i c k , F i g . 34, one sees t h e t y p i c a l s t r u c t u r e p u r i t y p e r i c l a s e , i n w h i c h t h e MgO g r a i n s b o n d e d a n d b o n d e d by a c a l c i u m T h e r e has been c o n s i d e r a b l e tion o f this s i l i c a t e ratio
intergranular
phase.
phase, both with
respect
content
(77).
composi-
to the CaO/Si0 The C a 0 / S i 0
2
2
c o n t r o l , i n the system CaO/Si0 /Mg0, t h e amount and 2
temperature a t which
t h a t r a t i o_s g r e a t e r no
direct
w o r k d o n e on t h e d e s i r a b l e
(76) and to the impurity
ratio will the
silicate
are both
o f high
than
liquid will
be f o r m e d .
about 2 o r very
l i q u i d i s t o be p r e s e n t
at 1600°C.
I t i s known
low s h o u l d
be u s e d , i f
In t h e case
o f Magnel,
i t seems t h a t t h i s r a t i o i s a r o u n d ^ which i s recommended f o r E l e c t r i c furnace
and Open-Hearth a p p l i c a t i o n s
tent of impurities dihedral
angle
amongst those
(other
oxides)
h a s a m a r k e d e f f e c t on t h e
o f the l i q u i d phase, Alumina and T i 0 causing
pronounced lowering
promoting l i q u i d penetration refractory
( 7 7 ) . The con-
being
2
i n this angle,
hence
into the grain boundaries and
disruption.
When M a g n e l i s u s e d f o r s t e e l o r s u p e r a l l o y under vacuum, two main p r o c e s s e s tion of s i l i c a
and formation
T h e s e two p r o c e s s e s intergranular
occur.
Reduction
melting or dissolu-
of alumina a t the working
c a n l e a d t o an i n c r e a s e
l i q u i d phase o r t o the lowering
face.
i n the amount o f o f the liquid
54 formation
temperature.
g r a i n , 15 mm a w a y f r o m
Indeed,
F i g . 35, shows a p e r i c l a s e
the metal/refractory i n t e r f a c e where,
b e s i d e s t h e l a r g e r amount o f i n t e r g r a n u 1 a r compound, one n o t i c e s a change i n i t scomposition and
an i n c r e a s e i n a l u m i n a
content.
with
a decrease
As o n e g e t s
the i n t e r f a c e , t h e r e i s v i r t u a l l y no s i l i c a granular liquids probably
are b a s i c a l l y o f the system
with small
left
in silica
closer to and the i n t e r -
CaO/A1^O^/MgO ,
fluxing additions of other oxides, f o r
instance TiO^. One
can a l s o observe,
the presence
i n some i n s t a n c e s
of a layer of calcium aluminates
the m e t a l ,
probably
of
course,
be a p o s s i b l e s o u r c e
in
the melt. Although
(at
drained intergranu1 ar liquid. This of calcium aluminate
importance chemical 2
than
small
shows t h a t
even
they would
have
I t a l s o draws a t t e n t i o n t o t h e
o f the t o t a 1 a n a l y s i s o f the r e f r a c t o r y , both a n d p h y s i c a l , s i n c e t h e c o n c e n t r a t i o n o f CaO a n d
i n an i n t e r g r a n u l a r p h a s e makes t h e b r i c k l e s s r e s i s t a n t i t c o u l d b e i f , s a y , f u s e d MgO g r a i n s , o f t h e s a m e
composition
were
Fig. at
will,
ther e f r a c t o r i e s
contribute i n c l u s i o n s , although
a much l o n g e r u s e f u l l i f e .
with
inclusions
t h e a t t a c k on t h e b r i c k i s o b v i o u s l y
i f a more s u p e r i o r cement were d e v e l o p e d ,
Si0
in contact
l e a s t c o m p a r e d t o t h a t on t h e j o i n t s ) t h i s
would s t i l l
(Fig. 36),
the working
bulk
used.
37 s h o w s a l a y e r o f s p i n e l o v e r a p e r i c l a s e g r a i n face, supporting the experimental
observations
p r e s e n t e d e a r l i e r a n d t h e t h e o r y t h a t s p i n e l s h o u l d be t h e
55
most s t a b l e oxide phase i n c o n t a c t with N i c k e l - b a s e d
super-
a l l o y c o n t a i n i n g high percentages o f aluminum i n a Magnel cruci ble.
56 4.3
Inc1usions
in Ni-Based
Although produces
Superalloy
i t i s w e l l known t h a t v a c u u m i n d u c t i o n m e l t i n g
c l e a n e r m a t e r i a l than a i r m e l t i n g
a r l y i n the case this is mainly the system, nitrides.
(5, 51),
particul-
of superalloys containing r e a c t i v e
elements,
due
to the e l i m i n a t i o n o f the atmosphere
p r e v e n t i n g the e x c e s s i v e One
by m e c h a n i s m s s u c h
r e f r a c t o r i e s can
as e r o s i o n , a n d
discussed in the previous
that stable nitrides
chemical
I t i s now
I t becomes then
tion
attack
as
in the
promote the formation alloy with
to recognize that there w i l l
products
o r VAR
of paramount importance
as f e r r o - c h r o m i u m
are
and
alloy.
to control
of those
inclu-
high nitrogen
content,
B e s i d e s , one
must
be s o m e i n c l u s i o n f o r m a -
from the r e f r a c t o r i e s , s i n c e a l l o b s e r v a t i o n s
no p r e s e n t VIM
produced
as T i ( C N ) )
i n VIM
f e r r o a l l o y s with high oxide content, etc. be r e a d y
be
well established
h e n c e , once f o r m e d , wi11 most 1 i k e l y remain
the f a c t o r s t h a t w i l l
still
and c a r b o n i t r i d e s ( s u c h
h a r d l y a f f e c t e d by t h e u s u a l t r e a t m e n t
and
that
c h a p t e r , and t h a t t h e s e
i n m o s t c a s e s , be o x i d e s .
s i o n s , such
of oxides
m u s t be a w a r e , h o w e v e r , o f t h e f a c t
'exogenous' i n c l u s i o n s from
will,
formation
from
r e f r a c t o r y c a n be c o n s i d e r e d t o t a l l y
show t h a t inert
under the p r o c e s s i n g c o n d i t i o n . In o r d e r t o i l l u s t r a t e of Ni-based
these
s u p e r a l l o y f r o m a VIM
c o m m e n t s , some
f u r n a c e were
samples
examined.
F i g . 38 s h o w s ca 1 c i um a 1 umi n a t e i n c l u s i o n s t r i n g e r s in a p a r t i a l l y these
f o r g e d VIM-VAR s u p e r a l l o y .
i n c l u s i o n s i n more d e t a i l
When o n e
t h e y show s m a l l
examines
entrapped
57
m e t a l p a r t i c l e s a n d a r e s u r r o u n d e d by s m a l l e r nitrides
( F i g . 39).
This would i n d i c a t e that they
p a r t i a l l y m o l t e n a t some s t a g e they
tend
to c l u s t e r during
due t o f a v o u r a b l e
titanium
surface
of the processing
melting
were and
and r e m e l t i n g ,
that probably
energy considerations.
I n F i g . 40
one s e e s a s p i n e l i n c l u s i o n , f o u n d i n a n o t h e r s a m p l e the
same m a t e r i a l .
core
or these should
composition addition
(since there
i n t h i s case
form o f a small ments).
products
i n c l u s i o n s , i t seems r a t h e r
i f not f o r t h e i r size nucleated
i n the m e l t ) ,
i s no i n t e n t i o n a l c a l c i u m
addition
i n t e r a c t i o n s observed
previously
These i n c l u s i o n s would only
and l a t e r i n t o the
were since
the formawithout
into the
ingot.
One i s l e f t t h e n
r e m o v i n g them, by a d e q u a t e p o u r i n g and h o l d i n g
improve-
have t o c l u s t e r i n
and p r a c t i c e , t h e f o r m a t i o n
c a n n o t e a s i l y be a v o i d e d .
a slag.
o r CaO
inclusions
It i s a l s o c l e a r that i n the present
dish design
for their
the b r i c k s ,
the m e l t w h e t h e r f l o a t i n g o r n o t a n d f i n d t h e i r way
tory technology
(too large
inclusions
could explain
tion of large s p i n e l or calciurn aluminate
tundish
materials
o f Ni-Mg a l l o y f o r w o r k a b i l i t y
I t i s e a s i e r to believe that those
difficulty.
clear
and the only magnesium added i s i n the
formed from i n t e r a c t i o n s o f the metal with the
discuss
be r e l a t e d t o r e f r a c t o r y
e m p l o y e d i n t h e VIM f u r n a c e , t o be d e o x i d a t i o n
from
Although i t i s not our purpose to
in depth the genesis that t h e i r oxide
carbo-
time,
state of refraco f these with
temperature
inclusions
the option control,
and perhaps a l s o p o u r i n g
of
tunthrough
58
4.4
P i e c e o f Rammed L i n i n g As d i s c u s s e d b e f o r e , i n d u s t r i a l l y , t h e a l t e r n a t i v e t o
brick/cement
lining
i s a rammed l i n i n g .
c a r e f u l l y sized mixture roughly
in a 60%MgO/40%A1 0 2
superalloy Nimonic 4.4.1
failed
t i o n on t h e w o r k i n g
3
case,
p e r i c l a s e and
composition
was
a
silica,
used to melt
the
901.
Macroscopic
The
these
of alumina,
In t h i s
Observation
l i n i n g shows metal f a c e arid m e t a l
c r a c k s b e i n g the
reason
why
i n c r u s t a t i o n and
fins the
along cracks
l i n i n g was
penetra(Fig.
removed
41)
from
service. 4.4.2
Microscopic
Observation
F i g . 42 s h o w s t h e s t r u c t u r e o f t h e away f r o m t h e m e t a 1 / r e f r a c t o r y
interface.
rammed l i n i n g
I t shows a s i n t e r e d
m a t r i x e s s e n t i a l l y composed of s p i n e l , s u r r o u n d i n g periclase
grains.
t h e l a r g e MgO presented
The
very
much
forwarded
for
most i n t e r e s t i n g c h a r a c t e r i s t i c o f the
mat-
i s t h a t t h e s i n t e r i n g i s q u i t e i n h o m o g e n e o u s , i . e . , some
regions are densely probably CaO
large
in the s l a g sample p r e v i o u s l y
(4.1), in agreement with the theory
their origin. rix
These p e r i c l a s e g r a i n s , resemble
g r a i n s found
6cm
bonded, while others are porous
l o o s e l y bonded.
ratio The
One
also observes
i n d i c a t i n g the p o s s i b l e presence
and
a very high of
oxides.
2
forsterite.
m e t a l / r e f r a c t o r y i n t e r f a c e s h o w n i n F i g . 43
sents a l a y e r of T i / A l
Si0 /
T h i s l a y e r , as i n t h e
pre-
case
Magnel b r i c k s , c o n t r i b u t e s macro i n c l u s i o n s to the melt
of
when
59 eroded
( F i g . 4 4 ) . C1 o s e t o t h i s 1 a y e r , t h e r e i s c o m p l e t e
dep1etion
o f s i l i c a i n the r e f r a c t o r y , the i n t e r g r a n u l a r volumes b e i n g filled
by m e t a l
layerandby
i n a region very c l o s e to the T i / A l
oxide
T i / C e o x i d e mi x t u r e s f u r t h e r i n t o t h e 1 i n i n g ( F i g . 4 5 ) .
T h i s c a n be r a t i o n a l i z e d i n t h e f o l l o w i n g m a n n e r . Silica
d i s s o l v e s i n t h e low o x y g e n a c t i v i t y
the oxygen content tion.
locally
i n t o the range
In t h e c a s e o f N i m o n i c
(as c o m p a r e d to X-750) and
901,
both
alloy,
of oxide p r e c i p i t a -
the high T i
t h e h i g h Fe c o n t e n t
oxides
cases.
to the m e l t ,
t h e Mg
and
decreases
of
Ti/Al
as o b s e r v e d
Since there is very l i t t l e
MgO
exposed
Titanium oxides
are e x c e l l e n t fluxes in
s h o u l d d i f f u s e r e a d i l y i n t o the l i q u i d
matrix,
d e c r e a s i n g the d i h e d r a l a n g l e , i n c r e a s i n g the amount of p h a s e and
hence enhancing
grains of r e f r a c t o r y . p o s s i b l e that a heat
The
metal
l i t t l e evidence
liquid
by s e p a r a t i n g
the
i t i s not known, i t i s q u i t e
from t h i s l i n i n g would c o n t a i n a s l a g caused
by CaO
a d d i t i o n as
s u b s t i t u t e d by t i t a n i u m
discussed
oxide.
f i n / r e f r a c t o r y c r a c k i n t e r f a c e shows of reaction.
s h o u l d h a v e o c c u r r e d due geneous expansion
the a t t a c k p r o c e s s
Although
v e r y s i m i l a r t o t h e one b e f o r e , w i t h t h e CaO
in
a v a i l a b l e for s p i n e l p r e c i p i t a t i o n would
be r e a d i l y e x h a u s t e d . t h i s system
and
the p r e c i p i t a t i o n of a mixture
i n s t e a d o f C r / A l o r Mg/Al o x i d e m i x t u r e s
the p r e v i o u s
content
(which
i n c r e a s e s t h e e f f e c t i v e n e s s o f T i as a d e o x i d a n t t h a t of Cr) f a v o u r s
bringing
This i n d i c a t e s t h a t the
to thermal
s t r e s s e s caused
o f t h e l i n i n g , and
wets the r e f r a c t o r y and
penetrates
t h a t the metal
i n t o the
crack.
very crack
by
inhomo-
simply
60 One a l s o n o t i c e s n o a l t e r a t i o n i n t h e f u s e d MgO ( F i g . 46) w h i c h a r e e v i d e n t l y more s t a b l e than
grains
the s i n t e r e d
p e r i c l a s e grains of Magnel. The ment w i t h
presence
of cerium
i s probably
REM, a s d e s c r i b e d b y C r e m i s i o
is a very e f f e c t i v e technique
due t o a de-S t r e a t -
(63) and o t h e r s .
and i t s use has been
This
discussed
p r e v i o u s l y , the only p r a c t i c a l l i m i t a t i o n to i t s a p p l i c a t i o n being
t h e REM r e s i d u a l s a n d c a r r y - o v e r Rothman
into the f i r s t performed. Cremisio
problems.
( 6 5 ) r e p o r t e d a s i g n i f i c a n t c a r r y - o v e r o f Ce heat
Although
i n a c r u c i b l e a f t e r t h e REM t r e a t m e n t
he a t t r i b u t e d t h i s o n l y t o t h e s k u l l ,
(63) suggested
t h a t the r e f r a c t o r i e s c o u l d play a
r o l e i n t h e r e v e r s i o n o f Ce i n t o t h e s u b s e q u e n t its recovery
was
uncertain.
I t i s also noteworthy
heats, that
making
Cremisio
w h e n Ce d e s u l p h u r i z i n g N i m o n i c 9 0 1 r e p o r t e d t h e " d e v e l o p m e n t o f an i n n o c u o u s
' o x i d e - l i k e ' c o v e r on h e a t s
containing
which would c e r t a i n l y confirm our observations
on t h e
o f Ce i n t h e l i q u i d p h a s e o f t h e r e f r a c t o r y , e n h a n c i n g mechanical
break-up.
cerium" presence its
61
CHAPTER 5 CONCLUSIONS AND 5a. simulate
The
the
materials
tests
initial
(less
deoxidized.
In
be e s s e n t i a l l y
with
the
obvious
of
superalloys
the h e a t ,
in which
r e a c t i v e elements)
this
will
performed with
part
the
RECOMMENDATIONS
stage, the
however,
same as
differences
are
the a t t a c k
that
of the
t h a t the
in a s u p e r a l l o y
is
in
AISI
steel,
the p r o c e s s i n g
substantially
lower
Hence, observed melting
the
fact that melting
t o be more
aggressive
of N i c k e l - b a s e d operating
a t the
steel/refractory 5b.
presence
The e x t r e m e l y
in metals
low o x y g e n - l o w
silicon
as
in
a component
Unfortunately,
for
used f o r refractory
totally silica
refractory its
refractory
frustrates
f o r VIM as
make
it
of a r e f r a c t o r y .
used present
is
of
are
steels.
usually than to
the
attack
products
time. of
silica
or it
in
in
the
contact
a very
poor
with choice
applications.
excellent
difficult
most a t t e m p t s
that
an i m p u r i t y
fabrication, its
production design
makes
presence
carbon
related
absence
vacuum
superalloys
besides
f r o m the also
any
under
tests,
refractories
low s t a b i l i t y
carbon
mechanism
f o r most
steel
a t any
raw
temperatures
can be
and the
interface
than
than
of
to the
superalloys
temperature
of carbon
lower
for Ni-supera11oys
higher
ores
that
much
of
not
and
steel
amount
deoxidant
and
the
molten
as
1095
do
i n many properties
to e x c l u d e
The
it
low s t a b i l i t y
t o combine
it
in
of
a lower
62
a c t i v i t y f o r m - - s u c h as m u l 1 i t e - - t o elements. selects with be
From t h e s e
conclusions
a cement ( o r any
to i t s s i l i c a
furnace,
content,
by
reacti
i t i s c l e a r t h a t when
refractory that will
t h e m e t a l ) f o r a VIM
given
reduce i t s attack
be
in
contact
special attention
i f the
best
one
should
r e s u l t s are
to
be
achieved. A l t h o u g h the silica
containing
to the
reaction
observation
c o n t r o l l i n g step
c e m e n t s s e e m s t o be
of the
hope t h a t s t e e l
altered portion in t h i s context)
' w a s h - h e a t s ' may
that there
of the b i n d i n g
the
properly
as a l i n i n g
silica
is hardly
to the m e t a l , during
the
the
layer.
The
fragile
and
that would
charging
any
any
l i n i n g by
phase r e s u l t s in a very adhering
physical
a c t u a l l y accomplish
o f a s i 1 i c a - d e p l e t e d , more s t a b l e
porous l a y e r , strongly function
(difusion)
of the medium-high
w a s h i n g , in the sense of c o n d i t i o n i n g
removal
its transport
of
i n t e r f a c e , i t i s a l s o c l e a r , from the
c e m e n t s ( 5 - 1 0 % S i 0^
production
in the c o r r o s i o n
not
o f the
next
heat. One
mi g h t
t o be u s e d , t h e y preferably with
the
should
be o f v e r y
of a Nickel-base
The
cement grains
and
i n any
stability.
use
Best
that i f firing low
heats
t h i s be
compatible
firing.
o f f l u o r i d e s to promote the
t h e i r reaction with
the
bonding
refractory
of the t e s t s , compromise the b a s i c r e s u l t s are
of elements which form oxides o f the m o r t a r o r the b r i c k .
are
r e a c t i v i t y , and
a l l o y , should
temperatures needed for 5c.
did not,
r e commen d t h e n ,
obtained
by s e l e c t i n g
that react with In some c a s e s
the
of
bricks grain
fluorides basic
as s h o w n i n
oxide the
63 tests of CaF2/Al20
3
of the b a s i c alumina and
improved
alloy.
and
M g F g / A ^ O ^ c e m e n t s , t h e same
was
observed
s t a b i l i t y was
The
stability
when i n c o n t a c t w i t h
steel
shown when i n c o n t a c t w i t h a
f a c t t h a t the f l u o r i d e - c o n t a i n i n g mixtures
w i t h Magnel b r i c k s enhances t h e i r cementing
superreact
properties.
It is
f e l t t h a t t h e u s e o f t h e A l 2 0 / M g F 2 / M g O c o m p o s i t i on
developed
i n t h i s work w i t h a more r e a c t i v e and b e t t e r s i z e d
alumina
3
powder and c o n t r o l l e d a d d i t i o n s o f l i g n i n
s u l p h i t e to
the b r i c k l a y i n g needs would present a d e f i n i t e the chemical analogous
s t a b i l i t y o f t h e VIM
composition,
present very promising
results.
i m p r o v e m e n t can p r o b a b l y ( A l F ^ o r MgF2) f o r s i l i c a MgO/40%Al20
3
5d.
improvement in
furnace linings.
u s i n g a b a s i c MgO
satisfy
g r a i n and
Also,
an
A l s h o u l d
As a c o r o l l a r y , c o n s i d e r a b l e
be a c h i e v e d by s u b s t i t u t i n g f l u o r i d e s i n ramming m i x t u r e s
such
as t h e
60%
previously described. The
p h y s i c a l c h a r a c t e r i s t i c s o f t h e r e f r a c t o r y can
h a v e a d e f i n i t e i n f l u e n c e on t h e k i n e t i c s o f a t t a c k , as s h o w n by t h e t e s t s w i t h f i r e d a n d u n f i r e d T a y l o r 320 c e m e n t . in a l l cases, f i r i n g to a temperature
This suggests that
as h i g h a s p o s s i b l e s h o u l d be
a t t e m p t e d , b e f o r e b r i n g i n g a new l i n i n g o r t u n d i s h i n s e r v i c e . T h i s w i l l a l s o h a v e f a v o u r a b l e e f f e c t s on t h o r o u g h l y d r y i n g t h e refractories.
One
should not expect,
however, dramatic
ments i n the c a s e o f m a t e r i a l s o f r e c o g n i z e d low 5e.
Since the presence
of comparatively
ages of aluminum (or other elements
with
stability. high
high a f f i n i t y
oxygen) s u b s t a n t i a l l y lowers
the a c t i v i t y c o e f f i c i e n t
oxygen in a s u p e r a l l o y melt,
the oxygen c o n t e n t
will
be g o v e r n e d
by t h e f o l l o w i n g f a c t o r s :
improve-
percentfor of
in these a l l o y s
64 1.
Phases (and compounds) p r e s e n t a t the metal/ refractory interface
2.
Time o f h o l d i n g i n the c r u c i b l e
3.
Physical c h a r a c t e r i s t i c s of the i n t e r f a c e .
The
first
factor will
c o n t r o l the e q u i l i b r i u m oxygen
c o n t e n t o f t h e a l l o y , by f i x i n g t h e o x i d e a c t i v i t i e s , the o t h e r two w i l l dissolution
determine
while
the kinetics o f the oxide
process.
It follows then, that the best s e l e c t i o n o f a r e f r a c t o r y f o r VIM ( f o r b o t h mixture
s t e e l s and s u p e r a l l o y s ) w i l l
be a
o f o x i d e s w i t h as h i g h as p o s s i b l e a s t a b i l i t y
r e s p e c t t o c a r b o n , high m e l t i n g p o i n t and good properties.
mechanical
A l s o , aluminum i s u s u a l l y present i n high
q u a n t i t i e s i n s u p e r a l l o y s t o be t h e e l e m e n t t h a t w i l l the oxygen p o t e n t i a l . low a l u m i n a
with
activity
enough control
I t i s t h e r e f o r e d e s i r a b l e t o have as as p o s s i b l e i n t h e r e f r a c t o r y i n o r d e r t o
drive the equi1ibriurn 2A1_ + 30 = A 1 0 2
3
(in the r e f r a c t o r y )
as m u c h a s p o s s i b l e t o t h e r i g h t . conforms almost
M a g n e s i urn -a Tumi n a t e
p e r f e c t l y to this description--apart, of
c o u r s e , from t h e mechanical
c h a r a c t e r i s t i c s p o i n t o f view,
w h i c h i s v e r y much a f u n c t i o n o f m a n u f a c t u r i n g Indeed,
technique.
t h e b e s t r e s u l t s w i t h s u p e r a l l o y s were o b t a i n e d
r e f r a c t o r i e s with high percentages The apparent
spinel
importance
by c o m p a r i s o n
w i t h T a y l o r 341
and,
of mechanical
with
of spinel. characteristics
o f the r e s i d u a l oxygen values
i s made obtained
Alundum 1139 i n t h e s u p e r a l l o y t e s t s .
65 Although
the former
c o n t a i n s some m o r e l o w e r s t a b i l i t y
the f a c t t h a t a dense complex allows the achievement Coralbond, stability
x
z
layer is
o x i d e s , e s p e c i a 1ly s i 1 i c a , hinders the
will,
any
possibility
c a s e , p r o m o t e e r o s i o n and
the b r i c k s p r e s e n t l y used
i n VIM,
i n t o the
In
when
kept
introduce
melt.
In o r d e r t o a c h i e v e will
de-S,
i t seems t h a t e i t h e r
be i n t r o d u c e d a n d
Earth treatments--or
with
lime mixtures
will
h a v e t o be u s e d .
such
accepted
by t h e
that less orthodox
users--
Volkov
I t i s e v i d e n t t h a t t h e use under
new
treatments,
as t h e one. d e s c r i b e d b y
r e f r a c t o r i e s w o u l d be i d e a l
of
(61)
lime
vacuum m e l t i n g c o n d i t i o n s ,
s i n c e t h e i r main m e t a l l u r g i c a l 1 i m i t a t i o n - - i n a b i 1 i t y to FeO
fluxing--is
problems time w i l l
removed under
before they w i l l
f u r n a c e on a r e g u l a r b a s i s . note tages
However, the and
be u s e d
in the p r o d u c t i o n
hydration
i n any
industrial
a s n o t i c e d by S c h l e g e l
VIM
I t i s e s p e c i a l l y i n t e r e s t i n g to p r e s e n t many
o f l i m e r e f r a c t o r i e s , a c t i n g as
b i n d i n g agent
resist
i t s e e m s t h a t some
t h a t t h e u s e o f c a l c i u m f l u o r i d e may
s i n t e r i n g and ance,
vacuum.
h a v e y e t t o be c i r c u m v e n t e d pass
in
degenera-
i n c l u s i o n s i n the melt.
in c o n t a c t with the a l l o y s in q u e s t i o n w i l l
techniques
lower
content.
lining, producing
a d d i t i o n , even
inclusions
of
of
use o f s i ags o r l i m e a d d i t i o n s t o the m e l t
in almost
t i o n o f the
formed,
In t h e c a s e
however, the c o n s i d e r a b l y higher content
5 f . :Jhe
as Rare
W
of very good r e s u l t s .
o f a c h i e v i n g a low o x y g e n
VIM
(Al CryTi )0
oxides,
and
improving
(78).
the h y d r a t i o n
advana resist-
66
Even
though
the chemical upgrading of the p r e s e n t l y
used r e f r a c t o r y b r i c k s would
be p o s s i b l e - - b y t h e u s e o f
(CaO + S i 0 ) p e r i c 1 a s e o r f u s e d MgO 2
grains i n s t e a d of the
p r e s e n t l y used p e r i c l a s e , f o r i n s t a n c e - - o n e would likely
t o f i n d e r o d e d g r a i n s and i n c l u s i o n s
still
in the
i.e.,
emphasis
s h o u l d be p l a c e d on p o u r i n g
of
concerned,
facilities,
the c o r r e c t s e l e c t i o n of p o u r i n g t e m p e r a t u r e s ,
d e s i g n and c o n s t r u c t i o n , time i n the l a d l e .
be
metal.
I t seems t h e n t h a t , as f a r as i n c l u s i o n s a r e the main
lower
The
tundish
possibility
p o u r i n g t h r o u g h a l o w - m e l t i n g f u s e d s l a g s h o u l d a l s o be
studied.
67
BIBLIOGRAPHY
68
BIBLIOGRAPHY B o n a r , K.M., C u n n i n g h a m , J . L . a n d W a l t h e r B u l l . , 4_6, N o . 7, ( 1 9 6 7 ) , 6 8 3 "BOF
S t e e l m a k i n g " , v o l . 2 , P e n Ike-, R.D. T M S - A I M E , New Y o r k , 1975
S i g w o r t h , G.K., e t a l . , T r a n s . M e t . A n n u a l V o l u m e , ( 1 9 7 7 ) , 104 Y a v o y s k i y , V . I . , e t a l . , Rus. W i n k l e r , 0.,
Metallurgical
F.H.,
et a l . (eds.),
Soc.
of C.I.M.,
M e t a l l . , No.2.
Reviews,
(1974),
Moore, J.H.,
M e t a l P r o g r e s s , 6_4, N o . 4 ,
Oberg,
e t a l . , J e r n k o n t . Ann.,
M a c h l i n , E.S.,
Trans.Met.Soc.
AlME,
( 1953 ) ,
103
155, No.6, 218,
M e m . S e t . R e v . M e t a 1 1 . , 5_7, No.
1
R.G.,
(1971),
(1960),
S c h a f f e r , P . S . , i n "T r a h s . V a c . M e t . C o n f . 1 9 6 0 " , R . F . ( e d . ) , I n t e r s c i e n c e P u b l . , New Y o r k , 151. T u r i l l o n , P., 649
10
5_, N o . 1 7 , ( 1 9 6 0 ) ,
B e n n e t t , G . H . J . , P r o t h e r o e , H.T., a n d W a r d , J . I . S . I . , 19_5 , ( 1 9 6 0 ) , 1 74
K.E., 251
Cer.
314 Bunshah, (1960),
9 , ( 1960),
D a r k e n , L.S., i n " B a s i c Open H e a r t h S t e e l m a k i n g " , D e r g e , G. ( e d . ) , T M S - A I M E , New Y o r k , 3 r d E d i t i o n , ( 1 9 6 4 ) , 608 K r a u s , T., i n " T r a n s . V a c . M e t . C o n f . 1963", Bunshah, ( e d . ) , AVS, B o s t o n , ( 1 9 6 4 ) , 50. K i n s m a n , G.J.M, H a z e l d e a n , G.S.F., and D a v i e s , J . I . S . I . , 2 0 7 , ( 1969 ) , 1 4 6 3 .
R.F.
M.W.,
B e t e r i d g e , W. a n d H e s l o p , J . , " T h e N i m o n i c A l l o y s " , C r a n e R u s s a k & C o . , New Y o r k , 2 n d E d i t i o n , ( 1 9 7 4 ) . R i t t e r , J . E . a n d B u r t o n , M.S., ( 1 9 6 7 ) , 21.
Trans.Met.Soc.
AlME,
239,
69 ( 1 7 ) A r m s t r o n g , W.M., C h a c k l a d e r , A . C D . and C l a r k e , J . F . , J . A m e r . C e r . S o c . , 4 5 , No. 3, ( 1962 ) , 1 15 ( 1 8 ) C h a m p i o n , J . A . , K e e n e , B . J . a n d A l l e n S., S c i . , 8, ( 1 9 7 3 ) , 4 2 3
J. of
Mater.
( 1 9 ) S u t t o n , W.H., i n " P r o c . o f t h e F i f t h I n t . S y m p . on E l e c t r o s l a g and O t h e r S p e c i a l M e l t i n g T e c h n o l o g i e s " , P a r t I I , B h a t , G.K. a n d S i m k o v i c h , A. ( e d s . ) , ASMAVS, P i t t s b u r g h , ( 1 9 7 4 ) , 648. (20) Snape,
E . , Ph.D.
T h e s i s , U n i v e r s i t y of Leeds
(1965).
( 2 1 ) G u p t a , R.D., M a t h u r , N.N. a n d R a o , M.R.K., S t e e l M o n t h l y , 9, No.2 , ( 1 9 7 4 ) , 171 ( 2 2 ) K a m a m u r a , M. , e t a l . , T e t s u - t o - H agane", 1823
Furnace
6_2, N o . 1 4 , ( 1 9 7 6 ) ,
( 2 3 ) W i n k l e r , 0., i n " V a c u u m M e t a l l u r g y " , W i n k l e r , 0. a n d B a k i s h , R., ( e d s . ) , E l s e v i e r P u b l . C o . , A m s t e r d a m , ( 1 9 7 1 ) , 1. ( 2 4 ) G r a h a m , S.W., 1066.
and A r g e n t , B.B.,
J . I . S . I . , 205 - ( 1 9 6 7 ) ,
(25) H u n t e r , CW. a n d T a r b y , S.K., i n "T r a n s . V a c . Me t . Con f . 1 9 6 8 " , B a r r o w , R.B. a n d S i m k o v i c h , A. ( e d s . ) , A V S , New Y o r k , ( 1 9 6 8 ) , 3 5 5 . ( 2 6 ) D e c k e r , R . F . , R o w e , J . P . a n d F r e e m a n , J.W., S o c . AIME, 211, ( 1 9 5 8 ) , 686
Trans.Met.
(27) T u r i l l o n , 658
( 1960),
P.,
Mem.Sci.Rev.Metal
1., 5_7, N o . 9 ,
( 2 8 ) S i m k o v i c h , A., i n " T r a n s . V a c . M e t . C o n f . 1 9 6 7 " , Foster, E . L . , ( e d . ) . A V S , New Y o r k , ( 1 9 6 7 ) , 3 6 1 (29) R e n k e y , A.L. and M c W a l t e r , ( 1 9 6 5 ) , 678
H.G.,
J. of Metals,
1_7,
( 3 0 ) S c h l a t t e r , R. a n d S i m k o v i c h , A., i n " T r a n s . V a c . M e t . C o n f . 1 9 6 6 " , O r e h o s k i , M.A. a n d B u n s h a h , R.F., ( e d s . ) , AVS, B o s t o n , ( 1 9 6 6 ) , 338. ( 3 1 ) S c h l a t t e r , R., i n " T r a n s . V a c . M e t . C o n f . 1968", R.B., a n d S i m k o v i c h , A . , ( e d s . ) , A V S , New ( 1 9 6 8 ) , 333. ( 3 2 ) M c l n t i r e , H.O., F o u n d r y ( 1 9 5 7 ) , 543.
T r a d e J . , 103_,
(33) L e i n b a c h , J r . , R . C and H a m j i a n , 18, ( 1 9 6 6 ) , 219.
H.J.,
Barrow, York,
No.2143, J. of Metals,
70 P a g i e v , S . S . , B e l o u s , V . V . a n d Nam, 13. P . , S o v . J . o f F e r r o u s Met., No. 7, ( 1 9 7 0 ) , 6 2 . Strushchenko, 221.
P.V.,
e t a l . , S t e e l i n t h e U S S R , ]_, ( 1 9 7 7 ) ,
K h u d o z h n i k , O.A. a n d K r a p i v n e r , L . L . , S o v . J . F e r r o u s M e t . , 11, N o . l , ( 1 9 7 0 ) , 7 3 . Gard,
Non-
M. , J o s s o , E . a n d M i g a u d , N o . 3 , ( 1 9 6 8 ) , 165
B.,
of
Non-
Met.Constr.Mec.,
Cameron Iron Works, p r i v a t e
communication
Y a m a n i s h i , H. a n d I s h i k a w a , No. 13 , ( 1 9 7 7 ) , 2 1 3 4
E., Tetsu-to-Hagane',
100,
63,
S p e n d e l o w , J r . , H.R., S e r v i , I . S . a n d F r i t z l e n , G.A., i n "1954 V a c . M e t . S y m p . " , The E l e c t r o c h e m i c a l S o c i e t y , B o s t o n , ( 1 9 5 5 ) , 24. B a r a c l o u g h , K.C. a n d T h o m p s o n , C., i n " M e a s u r e m e n t a n d C o n t r o l i n t h e M e l t S h o p - - T h e P r o c . o f S I M A C 72 C o n f . " , S h e f f i e l d , ( 1 9 7 3 ) , 2/1. Dyrkacz,
W.W.,
J . o f M e t a l s , 9,
(1957),
1513
H u d s o n , B . P . , i n "T r a n s . V a c . M e t . Con f . 1 9 6 3 " , B u n s h a h , R.F., ( e d . ) , AVS, B o s t o n , ( 1 9 6 4 ) , 103. C h i l d , H.C.
a n d H a r r i s , G.T.,
J . I . S . I . , 190,
( 1958),
R i c h a r d s o n , B.F., i n " Q u a l i t y Requirements o f S u p e r d u t y S t e e l s " , vo 1. 3 , L i n ds ay , R.W. (ed.), Interscience P u b l . , New Y o r k , ( 1 9 5 9 ) , 285 W a r d , R.G., i n " A s p e c t s o f M o d e r n F e r r o u s M e t a l l u r g y " , K i r k a l d y , J.S.,(ed.), Univ. of Toronto Press, T o r o n t o , ( 1 9 6 4 ) , 215. Bonchack, J . , p r i v a t e
communication
L a n g w o r t h y , D.E., i n " V a c u u m M e t a l l u r g y " , ( P r o c . V a c . M e t . C o n f . 1 9 7 7 ) , K r u t e n a t , R.C. ( e d . ) , S c i e n c e P r e s s , P r i n c e t o n , ( 1 9 7 7 ) , 1. K a w a i , S.,
T e t s u - t o - H a g a n < ? , 6 3 , No.
M a g o t e a u x , O.R., 1796, 1806
Ind.Heat.,
3 6 , No.
13 , ( 1 9 7 7 ) , 9,
(1969),
1975 1794,
C h i l d , H.C. a n d 01 a f i e l d , G . E . , i n " V a c u u m M e t a l l u r g y " , W i n k l e r , 0. a n d B a k i s h R. , ( e d s . j , E l s e v i e r P u b l . Co., Amsterdam, ( 1 9 7 1 ) , 517.
414
71 C h e s t e r , J.H.,
T r a n s . B r i . C e r . S o c . , 48 ( 1 9 4 9 ) ,
S c h l a t t e r , R. , p r i v a t e F l o r i d i s , T.P., W a r d , R.6.,
communication
T r a n s . M e t . S o c . . A l ME,
215.,
( 1959),
a n d H a l l , R. , J . I . S . I . , 195 , ( 1 9 6 0 ) ,
C o a t e , D.W., in "Proc. of E l e c t r o s T a g and O t h e r P a r t I I I , B h a t , G.K. ASM-AVS, P i t t s b u r g h ,
870 75
t h e T h i r d I n t . S y m p . on Special Melting Technologies", and S i m k o v i c h , A., ( e d s . ) , ( 1 9 7 1 ) , 31
T e z u k a , H., e t a l . , i n " P r o c . F o u r t h I n t . C o n f . M e t . " , I . S . I . J . , T o k y o , ( 1 9 7 4 ) , 142 Afanasyev, 41
263
Yu.M., e t a l . , Rus.
on
Vac.
M e t a l 1., No.3 , ( 1 9 6 3 ) ,
P o l y a k o v , A.Yu., e t a l . , Akad.Nauk. SSSR, I z v . Met.i G o r n o e D e l o , No.3 , ( 1 9 6 4 ) , 37 L i n c h e v s k i y , B.V.,
i b i d . , No.
2,
(1963),
25
V o l k o v , S.Ye., e t a l . , Rus.
M e t a l l . , No.4,
S c h l a t t e r , R.,
Pat. 3,853,540; Dec.10,
e t a l . , U.S.
(1964),
24 1974.
C r e m i s i o , R.S., C a n n o n , J.G. and E l l i o t , C . F . , i n " P r o c . o f t h e T h i r d I n t . S y m p . on E l e c t r o s l a g a n d O t h e r Special M e l t i n g T e c h n o l o g i e s " , Part I I I , Bhat, G.K. a n d S i m k o v i c h , A. ( e d s . ) , A S M - A V S , P i t t s b u r g h , (1971), 1 B a i l e y , R . E . , S h i r i n g , R.R. a n d A n d e r s o n , R . J . , i n " S u p e r a l l o y s : M e t a l l u r g y and M a n u f a c t u r e , P r o c . o f t h e T h i r d I n t . S y m p . , 1 9 7 6 " , K e a r , B.H., e t a l . ( e d s . ) , C l a i t o r P u b l . C o . , B a t o n R o u g e , ( 1 9 7 6 ) , 109 R o t h m a n , M.F., i n " V a c u u m M e t a l l u r g y " , ( P r o c . V a c . M e t . C o n f . 1 9 7 7 ) , K r u t e n a t , R.C. ( e d . ) , S c i e n c e P r e s s , P r i n c e t o n , ( 1 9 7 7 ) , 49 A s h l e y , W.E.,
private
communication
A r m s t r o n g , W.M., C h a c k l a d e r , A . C D . and Met. S o c . A l M E , 227, ( 1 9 6 3 ) , 1109
Rose, D.J.,
Trans.
R o s e n q v i s t , T., " P r i n c i p l e s o f E x t r a c t i v e M e t a l l u r g y " , M c G r a w - H i l l , New Y o r k , ( 1 9 7 4 ) B u t t , Y u . M . , T i m a s h e v , V.V. a n d S u ' i i m e n k o , L.M., I z v . A k a d . N a u k . S S S R . , N e o r g . M a t . , 5_, No. 6 , ( 1 9 6 9 ) , 1116
72 Pirogov, A.A., et a l . R e f r a c t o r i e s ( 1 9 7 0 ) , 39
(Ogneupory)
O ' H a r a , M . H . , Duga, J . J . and S h e e t s , B u l l . , 5_i, No. 7 , ( 1972) , 590
J r . , H.D.,
No.l, Cer.
K h o r o s h a v i n , L . B . , D o l g i k h , G.V. and V.M. U s t y a n t s e v , R e f r a c t o r i e s ( O g n e u p o r y ) , N o . 8 , ( 1 9 7 0 ) , 509 M a s s , V . H . and A b r a t i s , H . , A r c h i v wesen , 4JD, ( 1969 ) , 153 Sveshkov, Y u . V . , K a l m i k o v , V.A. Me t a l l . , N o . 4 , ( 1972) , 29 K u l i k o v , I.S., "Deoxidation Moscow, (1975)
f u r das
and A g e y e v ,
of M e t a l s " ,
EisenhuttenP.Ya.,
Rus.
Metallurgya,
K a p p m e y e r , K.K. and H u b b l e , D.H., i n " H i g h T e m p e r a t u r e O x i d e s " , p a r t I, A l p e r , A . M . , (e d. ) , vAcademi c P r e s s , New Y o r k , ( 1 9 7 0 ) , 2. White,
J . , ibid,
Schlegel,
E.,
77
East
Ger.
Patent 59,500,
Jun 2 5 ,
1966
73
FIGURES
74
h/Miins.
boiling
surface tion
d e s o r p
free oxygen uptake
t(min)
Fig.
1 Theoretical
deoxidation
diagram
(8)
75
Fig. 2
Deoxidation
Curves
(II)
76
—
—
019
i
t 15
i
30 i
1 -*
Fig. 3
i
I4.5
Dimensions of the c r u c i b l e s
used in the t e s t s
(mm).
Different wetting
behaviours
78
Spot infrared pyrometer Pyrex glass Rubber cork Dismantable Pyrex extension
-Brass joint
Quartz tube High alumina cement ( applied over Zr 0 ) 2
Zirconia felt Molten metal Crucible Water cooled HF coil Alumina rod Brassjoint
Vacuum gauge Baffle to diffusion pump rotary pump 8
DETAIL
Fig. 5
Experimental
'A'
Apparatus
valve
6
V a r i a t i o n i n c a r b o n c o n t e n t o f A-ISI 1095 melted in Tasil-X crucibles
steel
80
C
Fig.
7
I n t e r f a c e AISI 1095/Tasi1-X. a) S e c o n d a r y E l e c t r o n s b) A l u m i n u m X - R a y map c ) S i l i c o n X - R a y map
X2400
81
Fig. 8
M i c r o s t r u c t u r e o f T a y l o r 320. Secondary Electrons a) D r i e d a t 6 0 0 ° C b) F i r e d a t 1 0 0 0 ° C
X120,
82
phi
Fig. 9
I n t e r f a c e AISI 1095/Alundum 1162. x48 a) S e c o n d a r y E l e c t r o n s b) A l u m i n u m X - R a y map c ) S i l i c o n X - R a y map
Melt time 5 min.
83
Fig.
10
T y p i c a l m i c r o s t r u c t u r e o f a c e m e n t made Al 0 and CaF (CAF). X300. 2
a) b) c) d)
3
2
Backscattered Electrons O x y g e n X - R a y map A l u m i n u m X - R a y map C a l c i u m X - R a y map
from
d
c Fig.
11
Adherence t e s t .
I n t e r f a c e Magnel/CAF.
a) S e c o n d a r y E l e c t r o n s b) Magnesium X-Ray map c ) Aluminum X-Ray map d) C a l c i u m X-Ray map
X240
F i g . 12
V a r i a t i o n i n carbon c o n t e n t of AISI m e l t e d i n CAF c r u c i b l e s
1095
steel
Fig.
13
V a r i a t i o n i n carbon c o n t e n t of AISI m e l t e d i n A l u n d u m 1139 c r u c i b l e s
1095
steel
c Fig.14
T y p i c a l m i c r o s t r u c t u r e o f a c e m e n t made A l 0 and MgF ( S P 2 ) . X240 2
3
2
a) S e c o n d a r y E l e c t r o n s b) A l u m i n u m X - R a y map c ) M a g n e s i u m X - R a y map
from
Fig.
15
V a r i a t i o n i n carbon c o n t e n t of AISI m e l t e d i n SP2 c r u c i b l e s
1095
steel
89
C
Fig.
16
Adherence test. Interface Magnel/SP2 a) S e c o n d a r y E l e c t r o n s b) M a g n e s i u m X - R a y map c ) A l u m i n u m X - R a y map
X240
Fig.
17
V a r i a t i o n i n carbon c o n t e n t of AISI m e l t e d i n T a y l o r 341 c r u c i b l e s
1095
steel
Fig.
18
I n t e r f a c e AISI 1 0 9 5 / T a y l o r 341. X 40, S e c o n d a r y E l e c t r o n s
M e l t t i m e 15
min.
F i g . 19
V a r i a t i o n i n c a r b o n c o n t e n t o f A I S I 1095 s t e e l m e l t e d i n C o r a l b o n d o r T a s i l - X c r u c i b l e , as a f u n c t i o n o f th
c F i g . 20
I n t e r f a c e AISI 1095/Coralbond. X24 a) S e c o n d a r y E l e c t r o n s b) A l u m i n u m X - R a y map c ) S i l i c o n X - R a y map d) P h o s p h o r o u s X - R a y map
d
M e l t t i m e 15 m i n .
F i g . 21
Detail of altered Coralbond (Fig.20). a) S e c o n d a r y E l e c t r o n s b ) S i l i c o n X - R a y map c ) P h o s p h o r o u s X - R a y map
X60
95
F i g . 22
Alumina i n c l u s i o n s from Coralbond. Interface AISI 1095/Coral bond. X1000, Secondary E l e c t r o n s
F i g . 23
Equilibrium
A1 (K=2AJ_+ ?
30,
in Nickel
F i g . 24
I n t e r f a c e X-750/Magne1. X240 a) S e c o n d a r y E l e c t r o n s b) M a g n e s i u m X - R a y map c ) A l u m i n u m X - R a y map
M e l t t i m e 15 m i n .
b
c Fig.
25
Interface
X-750/Magne1, metal
a) S e c o n d a r y E l e c t r o n s b) Magnesium X-Ray map c) A l u m i n u m X-Ray map
removed.
X17
99
F i g . 26
Deoxidation
equilibria
i n a N i - 1 % A1
Alloy
100
F i g . 27
Dense l a y e r formed a t i n t e r f a c e X-750/Taylor X1000, B a c k s c a t t e r e d E l e c t r o n s
341
101
F i g . 28
M i c r o s t r u c t u r e of s l a g from d e s u l p h u r i z a t i o n treatment. X60, S e c o n d a r y E l e c t r o n s
102
C
F i g . 29
M i c r o s t r u c t u r e o f slag from d e s u l p h u r i z a t i o n X120 a) S e c o n d a r y E l e c t r o n s b) M a g n e s i u m X - R a y map c ) A l u m i nurn X - R a y map
treatment.
e
F i g . 31
Cross s e c t i o n o f working face o f Magnel b r i c k ( F i g . 3 0 ) . X60 a) S e c o n d a r y E l e c t r o n s b) M a g n e s i u m X - R a y map c ) A l u m i n u m X - R a y map d) C a l c i u m X - R a y map e ) N i c k e l X - R a y map
b
c Fig.
32
Metal p e n e t r a t i o n i n Magnel b r i c k v i a CalciumAluminates. X480 a) S e c o n d a r y E l e c t r o n s b) N i c k e l X - R a y map c ) C a l c i u m X - R a y map
106
F i g . 33
Metal p e n e t r a t i o n i n Magnel b r i c k - - C a 1 c i u m - A l u m i n a t e c o n t a i n i n g T i t a n i u m and Z i r c o n i u m . X600 a) S e c o n d a r y E l e c t r o n s b) M a g n e s i u m X - R a y map c ) A l u m i n u m X - R a y map
107
F i g . 34
Detail brick.
of a P e r i c l a s e grain i n Unused X1000, S e c o n d a r y E l e c t r o n s
Magnel
b
F i g . 35
P e r i c l a s e g r a i n i n U s e d M a g n e l b r i c k , 15mm working face. Secondary electrons. a) X60 b) X 6 0 0
from
109
b F i g . 36
C a l c i u m - a l u m i n a t e s on t h e w o r k i n g X480 a) S e c o n d a r y E l e c t r o n s b) C a l c i um X - R a y map
face of
Magnel
Fig.
37
S p i n e l l a y e r on t h e w o r k i n g f a c e a) S e c o n d a r y E l e c t r o n s b) M a g n e s i u m X - R a y map c ) A l u m i n u m X - R a y map
of Magnel
X60
Fig.
38
Macroinc1 usions i n p a r t i a l l y Superalloy. X200, Secondary
forged N i c k e l - b a s e d Electrons
112
b Fig.
39
Microstructure X1200.
o f Calcium-aluminate
a) S e c o n d a r y e l e c t r o n s b) T i t a n i u m X - R a y map
inclusion (Fi
c F i g . 40
Microstructure of spinel a) S e c o n d a r y E l e c t r o n s b) A l u m i n u m X - R a y map c ) M a g n e s i u m X - R a y map d) T i t a n i u m X - R a y map
d inclusion.
X600
114
F i g . 41
P i e c e o f u s e d Rammed l i n i n g .
XI
115
Fig.
42
T y p i c a l m i c r o s t r u c t u r e o f t h e r a m m e d l i n i n g 6cm f r o m t h e w o r k i n g f a c e . X20, Secondary electrons
116
F i g . 43
C r o s s s e c t i o n o f w o r k i n g f a c e o f rammed l i n i n g . X24 a) S e c o n d a r y E l e c t r o n s b ) M a g n e s i u m X - R a y map c ) A l u m i n u m X - R a y map d) T i t a n i u m X - R a y map e) N i c k e l X - R a y map
117
Fig.
44
I n c l u s i o n s f r o m rammed l i n i n g , I n t e r f a c e N i m o n i c 9 0 1 / rammed l i n i n g , X 8 0 , S e c o n d a r y E l e c t r o n s
118
F i g . 45
A l t e r e d r a m m e d l i n i n g (5mm f r o m i n t e r f a c e ) . Dark phase: s p i n e l ; gray phase: titanium rich; l i g h t phase: t i t a n i u m and c e r i u m r i c h . X400, Secondary Electrons
119
F i g . 46
U n a l t e r e d MgO g r a i n c l o s e t o w o r k i n g f a c e l i n i n g . X40, S e c o n d a r y E l e c t r o n s .
o f rammed
120
TABLES
OXIDE A1 0 2
C r
(h|
3
2°3
IN IRON 4. 3 X l O "
n
1. 1 X l O "
< Cr h
sio
2
(h
Ti0
2
(h .
s 1
!IN NICKEL
•
1. 5 X 1 0 "
4
1 4
8
ft
2. 2 X 10
•
2
h )
T ]
2. 2 X l O "
1 4
_5
1. 6 X 1 0
0
2. 8 X 1 0 '
- 6
6
2. 5 X 1 0 ~
6
3. 1 X l O "
8
0'
Mgo ( h
H g
3. 2 X 1 0 "
h ) o
TABLE I. S o l u b i l i t y p r o d u c t s and N i c k e l ( 3 )
of oxides
in iron
7
(2)
OXIDE
STEEL COMPOSITION OR ASSUMPTIONS
MgO
%C == 0.4%
P
%C == 0.4%
%Zr == 0 . 1 %
4.11 mm Hg
%c --= 0.4%
%A1 == 0 . 1 %
16.9
%Si == 0 . 2 5 %
1.95 a tm
Zr0
2
A1 0 2
Si 0
3
2
CaO
TABLE
= 0.4%
%c == 0.4%
CO
P
co •
Mg
Ca
PcO 3.86 mm Hg
mm Hg
0.68 mm Hg
2. P r e s s u r e s o f CO i n e q u i l i b r i u m w i t h d i f f e r e n t o x i d e s and s t e e l m e l t s a t 1600°C (From S c h a f f e r (10))
Ni
Al l o y
Si
Fe
Mn
Cr
Ti
Al
Co
Mo
B
Inconel
718
52.5
max. 0.06
max. 0.35
bal .
max. 0.35
19.
0.9
max. 0.6
max. 1.0
3.0
Inconel
X-750
bal.
0.04
0.3
7.0
0.7
15
2.5
0.9
0.5
0.3
limonic
Pk50*
bal.
0.03
max. 0.15
max. 2.0
max 0.1
19.5
3.0
1.4
13.5
4.2
0.007
901
bal
0.02 0.06
max. 0.4
bal
max 0.5
11.0 14.0
2.8 3.1
0.15 0.3
max. 1.0
5.0 6.5
0.01 0.02
bal
0.15 0. 20
max. 0.2
max 1.0
max 0.2
8.0 11.0
4.5 5.0
5.0 6.0
13, 17,
2 4,
0.01 0.02
Nimonic
l i m o c a s t Pk24 (IN 100)
*Simi1ar TABLE
3.
t o Was pa H o y Nominal
compositions
o f some Vacuum M e l t e d
Superalloys.
Zr
max. 0.003 0.03
max. 0.05
0.03 0.09
TABLE
4.
MATERIAL (REFRACT.)
Refractory SIZE OF FURN
ZIRCONIA or ALUMINA SILICA (KORUNDAL XD) or MAGNESITE -CHROME (GUIDON)
5. 2kg LAB.
MAGNEL or KORUNDAL XD
Practices
TYPE OF LINING
PRODUCTS
PRE-FIRED TO TEMP. OF BRICK MAKING OPERATION
D-979 A I S I 4340 A I S I 52100
27 ton PROD.
BRICK & MORTAR
LATROBE STEEL
MAGNESIA + ALUMINA (2%SiOj d.
200kg
RAMMED SINTERED (31600°C
Ni-base s uperal1oys Heat r e s . steels Aust n i ti c stee1s
ALUMINA -SILICA 95,60,42% A1 0
12kg
PRE-FIRED
%0.2C
2
3
n
II
LIFE AND/OR RESULTS
COMMENTS
A l l showed substanti al and c o m p a r able C losses both i n 1 s t & 2nd h e a t s . Oxygen c o n t e n t constant f o r each a l l o y .
Did not t r y K o r u n d a l XD w i t h 52100.
25-45
Backup l i n i n g : K o r u n d a l XD Working l i n i n g : K o r u n d a l XD Magnel
heats
heats
.".4 3
Decreasing Si pickup f o r d e c r e a s i ng Si 0 i n t h e 2
c r u c i b l e (and C cons.)
REFERENCE (28)
Some d e c r e a s e in C composition a f t e r 1st heat
MgO d e p l e t i o n i n t h e s u r f a c e and formation of sulphur r i c h 1 ayer
(29) ( 3 0 ) (31)
(22)
(24)
TABLE
4.
MATERIAL (REFRACT.)
(Cont'd) SIZE OF ' FURN.
TYPE OF LINING
PRODUCTS
MAGNESIA +ALUMINA (70/30)
7 ton
RAMMED WET/ GRAPHITE
Nickel alloys Stee1s (Carpenter Steel)
MAGNESIA
12kg
PROBABLY PRE-FlRE D
0.2%
ZIRCONIA (5% CaO)
15kg
?
MAGNESIA
Also 100kg
LIFE AND/OR RESULTS 30 h e a t s
Steel
NiMo 1.5 Alloy
COMMENTS
REFERENCE (33)
STEADY STATE 0_ 5 ppm 10 ppm Zr + Si p i ckup
(6)
(34)
Mg + Fe + S i pickup Al + S i pickup
ALUMINA FUSED LIME
20kg
RAMMED SINTERED @2000°C
N i - Fe Alloys
MAGNESIA + ALUMINA 65/25 6%S i 0
50/150 kg
RAMMED
Fe-C m e l t s
44 h e a t s o r mo re 8 cycles to room temp.
Very e f f e c t i v e S i d e - O x . and de-S
(35)
S t e a d y S t a t e 0^ 12 ppm
(11)
2
(NORTON RM 1170)
./cont'd
TABLE 4.
Cont'd SIZE OF FURN
TYPE OF LINING
MAGNESIA + ALUMINA Termax B3 Termax MG 10 ~75/20 5S i 0
350kg
RAMMED
SPINEL o r MAGNESIA or ALUMINA
10kg
MATERIAL (REFRACT.)
LIFE AND/OR RESULTS
PRODUCTS
COMMENTS
REFERENCE
Nickel Alloys (Mg/W) C deoxidation
(36)
0
Fe = Ni Ni-Fe-Mo Ni
For Pure I r o n b e s t de-Ox i n Alumina (3.6x 10-5 CxOJthen S p i n e l and then M a g n e s i a ( 1 6 x l O - C x 0)
(37)
5
Stee1s Superal1oys (Cameron I r o n )
MAGNEL
60t
BRICK & MORTAR
MAGNESIA
1 ton
RAMMED 20% Mo-Ni (PROBABLY) A l l o y Dai do Steel
MAGNESIA
250kg 5-10t
(38)
::
(39)
Hastel1oy R-235 RAMMED
FIRTH-BROWN
(40) F i r i n g with
template
(41)
TABLE 4.
Cont'd
MATERIAL (REFRACT.)
SIZE OF FURN
MAGNESIA or MAGNESIAALUMINA or ALUMINA
TYPE OF LINING
PRODUCTS
RAMMED
Fe,Ni
alloys
1501000 kg
RAMMED (?)
MAGNESIA
6t
RAMMED
MAGNESIA
300kg
RAMMED
Ni a l l o y s Steels (Jessop & Sons)
500kg
RAMMED
Steels (Ke1seyHayes C o . )
RAMMED
Steels Ni-Alloys
MAGNESIA ALUMINA (70/30)
MAGNESIA or MAGNESIAALUMINA (66/25)
COMMENTS
Spinel ~3 5 heats 250-1000kg Magnesi a h a l f of the 1i fe of S p i n e l
ZIRCONIA or MAGNESIA
MAGNESIA , ALUMINA (70/30)
L I F E AND/OR RESULTS
REFERENCE
F i r i n g with template or g r a p h i t e c o r e - S t r e s s e s i n MgO a r e large
N i a 11 oy s , Steels (Special M e t a l s , 1957)
(5)
(42)
12 h o u r d ry i n g
vacuum
Firing with graphite @. 2000°C i s p r e f e r r e d since i t allows the r e f r a c t o r y t o be checked before use.
(43) (44)
(45)
,
F i r i n g with template or g r a p h i t e c o r e . M a g n e s i a bonded by CaO + S i 0
(46)
2
M a g n e s i a - A l u m i n a by CaO + S i 0 + FeO 2
/conf d
TABLE 4. MATERIAL (REFRACT.)
Cont'd SIZE OF FURN.
TYPE OF LINING
KORUNDAL XD CORALBOND
BRICK and MORTAR
MAGNEL CORALBOND
BRICK and MORTAR
PRODUCTS
L I F E AND/OR RESULTS
REFERENCE
COMMENTS
7 heats of Ni-superal1oy Severe e r o s i o n i n the j o i n t s Better results than w i t h KORUNDAL XD CORALBOND
(47)
(47)
MAGNEL PE RIBON D
lot
BRICK and MORTAR
Stee1s (Armco Research)
15-20 h e a t s (Cyclic ope r a t i on)
Fai1ure occurs in the bottomTop l a y e r o f b r i c k s b u l g e s up. B a c k u p i s KORUNDAL XD
(48)
SPINEL BRICK or MAGNESITECHROMITE BRICK or ALUMINA BRICK
10 to 30t
BRICK and MORTAR
Stee1s,
20-45 h e a t s
MAG-CHROMITE b r i c k has 65%MgO/13% CrO /8%Al 0
(49)
ALUMINA or SPINEL
2.5t lOt 25t 60t
TYPE OF LINING BRICK and MORTAR
PRODUCTS
L I F E AND/OR RESULTS Good
COMMENTS
REFERENCE
Cement T a y l o r 3 4 1 * Back L i n i n g MULLITE BRICK w i t h N a S i 0 3
bonded s i l i m a n i t e (TAYLOR 320)
(50)
MATERIAL
C
Mn
Si
Cr
N i c k e l vac X - 7 5 0 *
0.067
0.08
0.04
13.55
A I S I 1095 (nomi na1)
0.96**
0.40
0.30
-
* Analysis **Analysed TABLE
5.
by T e 1 e d y n e - A l 1 vac a t UBC Composition
of metals
used i n the
tests
Ti
Al
Fe
Ni+Co
2.58
0.71
7.75
71.35
bal.
MATERIAL
MgO
Magne1
89..8
A 1
2°3 8. 3
Alundum 1139
99.
Alundum 1163
81.
Cora 1 bond P e r i bond 320
Taylor
341
Tasil
X
TABLE
6.
2
0. 7
P
2°5
-
0., 7 12.
C
a
0
F e
2°3
Others
-
0.,9
0.. 3
0., 1
0.. 1
Na 0--
0., 3
0.,4
1.. 3
Ti0 --
5. 3. 1
2
2
0., 1
79. 3
6., 7
9.1
0., 1
1.. 5
Ti0 --
78..8
2. 4
14., 7
-
0.. 1
0..8
A l k a l i e s - -2. 2
10.
-
0., 10
0.,10
A l k a l i e s - - 2 . 30
0..02
Taylor
S i 0
87. 95 .
0.. 1
55.
Typical chemical a n a l y s i s materials tested.
0..02 40.
0..03
4.5
-
2
0., 1
A l k a l i e s - - 2 ., 7
•1.0.
{% , a c c o r d i n g t o s u p p l i e r s )
of
refractory
OXYGEN CONTENT
MATERIAL SP2
17
MAGNEL
22
TAYLOR 341
28
PERIBOND
37
CAF
41
ALUNDUM 1139
46
CORALBOND
60
X-750 as
TABLE 7.
received
(PPM)
7
Oxygen c o n t e n t o f X-750 a f t e r 15 m i n . h o l d i n g t i m e a t 1500°C i n d i f f e r e n t refractory materials.