Inductive type(~50kW). Ref: EE Times Japan 2009.10. AC. Power. Inverter. Cable. Capacitor. Primary Coil. Secondary Coil. Battery. Rectifier/Charger. Maxwell.
Wireless Power Transfer Using Maxwell and Simplorer Zed (Zhangjun) Tang Mark Christini Takahiro Koga ANSYS, Inc.
Wireless Power Supply System for EV • Inductive type Inductive type(~15W)
Inductive type(~50kW)
Efficiency
100%
Maxwell Resonance type Simplorer
50%
Battery Rectifier/Charger
AC
Cable 0% Power 1mm 1cm 10cm 1m 10m 100m Inverter
Ref: EE Times Japan 2009.10
Transfer Distance
Capacitor
Secondary Coil Primary Coil
Geometry
Schematic
20kW @ 400V/20kHz
Core
Shield Plate
Coil
Secondary Coil
Primary Coil
Materials
Magnetic Core • Material : FDK 6H40 (Bs=0.53T, μi=2400)
Winding Coil • • • •
Secondary
Litz wire : 0.25φ × 384 parallel turns Conductivity : 5.8×107[S/m] Primary : 10 turns Secondary : 5 turns 400mm 330mm 90mm
Primary 90mm 410mm
500mm
Electromechanical Design Flow ANSYS CFD Thermal
Simplorer System Design
RMxprt Motor Design
PMSYNC
IA A
Torque A
IB
J
D2D
ICA:
A
IC
PP := 6
A
GAIN
Q3D Parasitics
Optimization
PExprt Magnetics
ANSYS Mechanical Thermal/Stress
Maxwell Electromagnetic Components Model order Reduction Co-simulation Field Solution Model Generation
Maxwell ‐ Introduction • Solves 2-D and 3-D electromagnetic field problems using FEA • Five Solution Types: Electrostatic, Magnetostatic, Eddy Current, Transient Electric, Transient Magnetic • Determines R,L,C, forces, torques, losses, saturation, time-induced effects • Simulation of: Power Magnetics, Inductors, Transformers, Motors, Generators, Actuators, Bus bars • Co-simulation with Simplorer • Direct link from PExprt, RMxprt • Direct link to ANSYS Mechanical
Simplorer ‐ Introduction Circuits
• Three Basic Simulation Types: • Circuits • Block Diagrams • State Machines • Multi‐domain simulator for electrical, magnetic, mechanical, fluid, and thermal systems • Integrated analysis with EM tools (Maxwell, PExprt, Q3D, RMxprt, HFSS) and thermal tools (ANSYS CFD, ANSYS Icepack) • Co‐simulation with Maxwell and Simulink • Optimization and Statistical analysis • VHDL‐AMS capability
R1
R2
50
1k
R3
R4
50
C2
C1
N0002
1k 3.3u
3.3u V0 := 5
12
N0003
N0004
V0 := 0 N0005
Block Diagrams
I_PART_id CONST
I
UL := 9 LL := ‐9
id_ref
P_PART_id
LIMIT
id
GAIN
yd
G(s)
GAIN
GS2
KP := 0.76 SUM2_6
State Machines IMP = 0 and RLine.I = IUP
SET: CS1:=-1 SET: CS2:=1 SET: CS3:=-1 SET: CS4:=-1
IMP = 0
IMP = 1 IMP = 0
SET: CS1:=1 SET: CS2:=-1 SET: CS3:=-1 SET: CS4:=-1
IMP = 1
IMP = 1 and RLine.I = IUP
SET: CS1:=-1 SET: CS2:=-1 SET: CS3:=-1 SET: CS4:=-1
Solution Flow Chart • Maxwell + Simplorer Gap
Maxwell Magnetostatic
Sliding
Core, Winding
Maxwell Eddy Current Impedance Model
Maxwell Eddy Current Fields, Losses
Simplorer AC / TR Circuit / Drive / Controller design Waveform, Efficiency, Power factor, Response
Maxwell / Magnetostatic • L, M, k : • Self Inductance • Mutual Inductance • Coupling Coefficient
L2 M L1
L1 M M L2
k=0.54
Maxwell / Magnetostatic Core Shape/Material Number of turns Current Amp. Gap
Inductance L, M Coupling factor k Field Core saturation
Coupling - k
3D_Static_sliding_k
ANSOFT
1.00 Curve Info Matrix1.CplCoef(Current_1,Current_2) Setup1 : LastAdaptive Gap='50mm'
Matrix1.CplCoef(Current_1,Current_2)
0.80
Matrix1.CplCoef(Current_1,Current_2) Setup1 : LastAdaptive Gap='100mm' Matrix1.CplCoef(Current_1,Current_2) Setup1 : LastAdaptive Gap='150mm'
0.60
Matrix1.CplCoef(Current_1,Current_2) Setup1 : LastAdaptive Gap='200mm'
0.40
Mag B
0.20
0.00 0.00
20.00
40.00
60.00
80.00 Sliding [mm]
100.00
120.00
Coupling factor k – sliding gap
140.00
160.00
Maxwell / Magnetostatic Verification for core saturation:
M k L1 L2
X: Gap [mm] / Y: Input Current [A] / Color: Mutual inductance [nH] Mutual Inductance L12
2D_Static
Mutual Inductance L12
ANSOFT
2D_Static_BH
Matrix1.L(C
Matrix1.L(C
[nH]
[nH] 3.4200e+004
3.4200e+004
2.8500e+004
2.8500e+004 2.2800e+004
100
2.2800e+004
0.10
1.1400e+004 5.7000e+003 0.0000e+000
1.7100e+004
Specification Area
Gap [meter]
1.7100e+004
Specification Area
Gap [mm]
ANSOFT
1.00
1000
1.1400e+004 5.7000e+003 0.0000e+000
0.01
10
Saturation 0.00
1 0.00
20.00
40.00
60.00 Current [A]
Linear Material (Initial permeability)
80.00
100.00
0.00
20.00
40.00
60.00
80.00
Current [A]
Nonlinear Material (BH curve)
100.00
0.60
0.50
Maxwell / Magnetostatic
B (tesla)
0.40
• Verification for core saturation • Core’s BH curve, Mag_B field plot • No magnetic saturation
0.30
Nonlinear BH curve
0.20
0.10
0.00
0.00
100.00
200.00 H (A_per_meter)
300.00
400.00
Mutual Inductance L12
2D_Static_BH
ANSOFT
1.00 Matrix1.L(C [nH] 3.4200e+004 2.8500e+004
0.10 Gap [meter]
~0.4T
2.2800e+004
Specification Area
1.7100e+004 1.1400e+004 5.7000e+003 0.0000e+000
0.01
0.00 0.00
20.00
40.00
60.00 Current [A]
Maximum point : 0.26T
80.00
100.00
Maxwell / Eddy Current • State Space Modeling for Simplorer • Frequency domain impedance(R,L) model for circuit simulation
• AC fields and Losses (after circuit simulation)
Maxwell / Eddy Current Solver AC Characteristics Inductance L, M Coupling factor k Field Core Hysteresis Shield
Core Shape/Material Number of turns Frequency Gap Shield Shape/Material
Core(Power Ferrite)
Shield Plate (Aluminum)
No Shielding
Shielding
Simplorer with Maxwell State Space Model
AC / Frequency domain
TR / Time domain
Efficiency Map • Output/Input Power • Tuned capacitance for each conditions • Blue valley vs sliding indicates poor design (coil too small)
Gap
Max.96% 90%
Efficiency[%]
P VI cos Pout 100% Pin
50%
20%
Sliding
Gap [mm]
Sliding [mm]
Maxwell – Simplorer System Simulation IGBT1
THREE_PHASE1 D5
D7
D1
IGBT3
D3
D9 WM1
3PHAS
PHI = -120°
~
PHI = -240°
R2 Current_1:src Current_2:src
1.72uF
~
R1
W
PHI = 0°
~
WM2 Cs
+
A * sin (2 * pi * f * t + PHI + phi_u)
7.2mOhm
+
C1
D6
D8
D13 Rload
3.6mOhm
13ohm
Current_1:snk Current_2:snk
1000uF
D11
W
Cp
C2
4.96uF IGBT2
D2
IGBT4
1uF
D4
D12
-
D14
D10
+ Battery
LBATT_A1
Wireless Power Transformer
0
Rectify
AC400V
Inverter
0
Battery Curve Info
700.00
WM1.V TR
PWR_Probe1
WM2.V TR
TRANS1 TRANS2 STATE_11_1
PWR Probe
STATE_11_2
PWR_Probe2 SET: TSV4:=1 SET: TSV3:=0 SET: TSV2:=0 SET: TSV1:=1
Dead_Time:=2u DC_Source:=400
SINE1.VAL < TRIANG1.VAL
SET: TSV4:=0 SET: TSV3:=0 DT1 SET: TSV2:=0 SET: TSV1:=0 DEL: DT1##Dead_Time
321.9453
200.00
FML_INIT1
Modulation_Index:=0 Carrier_Freq:=20k Frequency:=20k
rms
281.0066
PWR Probe
Y1 [V]
ICA:
0
-300.00
SINE1 TRANS3 TRANS4 AMPL=Modulation_Index FREQ=Frequency
Controller
STATE_11_4
STATE_11_3
-800.00 2.00
2.20
2.40
Time [ms]
2.60
2.80
3.00
TRIANG1 DT4
AMPL=1 FREQ=Carrier_Freq
SET: TSV4:=0 SINE1.VAL > TRIANG1.VAL SET: TSV3:=0 SET: TSV2:=0 SET: TSV1:=0 DEL: DT4##Dead_Time
SET: TSV4:=0 SET: TSV3:=1 SET: TSV2:=1 SET: TSV1:=0
150.00
Curve Info WM1.I TR
WM1.I WM2.I
125.00
TR
Y1 [A]
WM1.V TR
-0.0037
0.00 -40.2840 -64.8250 -408.7847
TR
-315.0105
-319.5653
WM2.V
Y Axis873.02 rms Y1
TR
rms 41.6165 34.8648
50.00
Y1
34.1140
Y2
276.0822
0.00 Y2
WM2.I
38.9542
500.00 Y1 [A]
Curve Info TR
Y2 [V]
250.00
100.00
0.00
316.6292
-53.6971 -377.1247
-50.00 -500.00
-125.00
-100.00 -250.00
2.900
2.925 MX1: 2.9200
2.950 Time [ms]
2.975
3.000
-1000.00 -150.00
0.0610 MX2: 2.9811
2.00
2.20
2.40
Time [ms]
2.60
2.80
3.00
Maxwell – Simplorer System Simulation IGBT1
THREE_PHASE1 D5
D7
D1
IGBT3
D3
D9 WM1
3PHAS
PHI = -120°
~
PHI = -240°
R2 Current_1:src Current_2:src
1.72uF
~
R1
W
PHI = 0°
~
WM2 Cs
+
A * sin (2 * pi * f * t + PHI + phi_u)
7.2mOhm
+
C1
D6
D8
D13 Rload
3.6mOhm
13ohm
Current_1:snk Current_2:snk
1000uF
D11
W
Cp
C2
4.96uF IGBT2
D2
IGBT4
1uF
D4
D12
-
D14
D10
+ Battery
LBATT_A1
Wireless Power Transformer
0
Rectify
AC400V
Inverter
0
Battery Curve Info
700.00
WM1.V TR
PWR_Probe1
WM2.V TR
TRANS1 TRANS2 STATE_11_1
PWR Probe
STATE_11_2
PWR_Probe2 SET: TSV4:=1 SET: TSV3:=0 SET: TSV2:=0 SET: TSV1:=1
Dead_Time:=2u DC_Source:=400
SINE1.VAL < TRIANG1.VAL
SET: TSV4:=0 SET: TSV3:=0 DT1 SET: TSV2:=0 SET: TSV1:=0 DEL: DT1##Dead_Time
321.9453
200.00
FML_INIT1
Modulation_Index:=0 Carrier_Freq:=20k Frequency:=20k
rms 281.0066
PWR Probe
Y1 [V]
ICA:
0
-300.00
SINE1 TRANS3 TRANS4 AMPL=Modulation_Index FREQ=Frequency
Controller
STATE_11_4
STATE_11_3
-800.00 2.00
2.20
2.40
Time [ms]
2.60
2.80
3.00
TRIANG1 DT4
AMPL=1 FREQ=Carrier_Freq
SET: TSV4:=0 SINE1.VAL > TRIANG1.VAL SET: TSV3:=0 SET: TSV2:=0 SET: TSV1:=0 DEL: DT4##Dead_Time
SET: TSV4:=0 SET: TSV3:=1 SET: TSV2:=1 SET: TSV1:=0
150.00
Curve Info WM1.I TR
WM1.I WM2.I
125.00
TR
Y1 [A]
WM1.V TR
-0.0037
0.00 -40.2840 -64.8250 -408.7847
TR
-315.0105
-319.5653
WM2.V
Y Axis873.02 rms Y1
TR
rms 41.6165 34.8648
50.00
Y1
34.1140
Y2
276.0822
0.00 Y2
WM2.I
38.9542
500.00 Y1 [A]
Curve Info TR
Y2 [V]
250.00
100.00
0.00
316.6292
-53.6971 -377.1247
-50.00 -500.00
-125.00
-100.00 -250.00
2.900
2.925 MX1: 2.9200
2.950 Time [ms]
2.975
3.000
-1000.00 -150.00
0.0610 MX2: 2.9811
2.00
2.20
2.40
Time [ms]
2.60
2.80
3.00
Simplorer: Design Driver Controller in a System Level Simulation
Circuit Driver Controller
AC/TR Response Waveform Efficiency
Back to Maxwell: Core Hysteresis Loss Using the Current Amplitude and Phase from Simplorer
Considering Magnetic Loss tangent
j 1 j tan Primary
Core Loss
Secondary Freq [kHz] 1
20.000000
Core1st_Loss Setup1 : LastAdaptive Phase='0deg' 0.909102
Core loss[W]
Hysteresis Loss
3D_Eddy Core2nd_Loss Setup1 : LastAdaptive Phase='0deg' 0.313144
ANSOFT
Back to Maxwell: Shield Surface Loss Using the Current Amplitude and Phase from Simplorer
Key Point: Impedance boundary BC Shield Loss Freq [kHz] 1
20.000000
Shield1st_Loss Setup1 : LastAdaptive Phase='0deg' 22.938675
Shield Loss[W] Secondary
Primary Surface Loss
3D_Eddy Shield2nd_Loss Setup1 : LastAdaptive Phase='0deg' 37.886583
ANSOFT
Back to Maxwell: Field Solution Using the Current Amplitude and Phase from Simplorer XY Plot 1
2D_Eddy
ANSOFT
10.00 Curve Info Mag_B Setup1 : LastAdaptive Freq='20kHz' Phase='0deg'
Mag_B [mTesla]
1.00
0.10
0.01
Distance
0.00
0.00 0.00
0.20
0.40
Distance [meter]
0.60
0.80
Magnetic Field Density
Distance
Magnetic Field Intensity
1.00
Back to Maxwell and Link to HFSS • Maxwell → HFSS Dynamic Link • Magnetic source solved by Maxwell and Link to HFSS field solution • Far Field and Large Area electromagnetic solution • HFSS can handle a car body object as 2D sheet object
Maxwell HFSS
Back to Maxwell and Link to HFSS • Maxwell → HFSS Dynamic Link • Magnetic source solved by Maxwell and Link to HFSS field solution • Far Field and Large Area electromagnetic solution • HFSS can handle a car body object as 2D sheet object
Maxwell HFSS
Thermal /Stress Analysis using Workbench • Maxwell 3D Eddy Current losses can be imported directly to ANSYS steady‐state thermal and stress solver for mechanical analysis
Conclusion • Wireless power transfer for HEV/EV’s can easily be simulated with ANSYS electromagnetic and circuit simulation tools. • The full solutions requires a system level approach. • ANSYS Products can also support multi‐physics simulation, such as combined Thermal / Structure for mechanical analysis. IGBT1
THREE_PHASE1 D5
D7
D1
IGBT3
D3
D9
3PHAS
WM1
+
A * sin (2 * pi * f * t + PHI + phi_u)
~
PHI = 0°
~
PHI = -120°
Cs
WM2 R1
W 1.93uF
(1/87-0.004) ohm
1000uF
~
IGBT2 D6
D8
D2
IGBT4
+ D11 D11
W
Current_2nd_1:snk Current_1st_1:snk
C1 PHI = -240°
R2 Current_1st_1:src Current_2nd_1:src
D13 D13 Rload Rload
(1/348-0.001) ohm
Current_1st_2:src Current_2nd_2:src
Cp
Current_2nd_2:snk Current_1st_2:snk
5.24uF
10ohm 10ohm
C2C2 1e-006farad 1e-006farad D12 D12
D4
- - ++
D14 D14
D10
Battery Battery
LBATT_A1 LBATT_A1
00
0
0
40.00
Curve Info WM1.I
9.4139
WM2.I
10.5939
TR
TRANS1 TRANS2 STATE_11_1
STATE_11_2
TR
rms
20.00
FML_INIT1
Modulation_Index:=0 Carrier_Freq:=10k Frequency:=10k
SET: TSV4:=1 SET: TSV3:=0 SET: TSV2:=0 SET: TSV1:=1
Dead_Time:=2u DC_Source:=200
SET: TSV4:=0 DT1 SINE1.VAL < TRIANG1.VAL SET: TSV3:=0 SET: TSV2:=0 SET: TSV1:=0 DEL: DT1##Dead_Time
Y1 [A]
ICA:
0.00
SINE1 TRANS3 TRANS4 AMPL=Modulation_Index FREQ=Frequency
STATE_11_4
STATE_11_3
SET: TSV4:=0 SET: TSV3:=0 SINE1.VAL > TRIANG1.VAL SET: TSV2:=0 SET: TSV1:=0 DEL: DT4##Dead_Time
SET: TSV4:=0 SET: TSV3:=1 SET: TSV2:=1 SET: TSV1:=0
-20.00
TRIANG1 DT4
AMPL=1 FREQ=Carrier_Freq
-40.00
0.00
0.25
0.50
0.75
1.00 Time [ms]
1.25
1.50
1.75
300.00
156.0455 TR TR
Y1 [A]
TR
27.9814 -0.0090 -1.2036 -6.0797
0.00
1.3406 -0.5141T R
WM2.I
Y Axis
9.3501
Y1
10.5176 100.00
WM1.V
Y2
153.6594
WM2.V
Y2
119.4615
0.00
-20.00
-100.00
-40.00
-200.00
1.90
1.92
1.94
Time [ms]
1.96
1.98 MX1: 1.9753 0.0030 MX2: 1.9783
2.00
Curve Info rms WM1.V 154.9045
TR
200.00 rms
Y1
TR
WM2.V 120.2425
100.00
Y1 [V]
Curve Info WM1.I
131.1979 20.00
Y2 [V]
40.00
2.00
-100.00
-300.00 0.00
0.25
0.50
0.75
1.00 Time [ms]
1.25
1.50
1.75
2.00
Electromagnetic tools
Which is the optimal simulation tool ? “Low Freq.”
Maxwell
“High Freq.”
HFSS
Differentiating Features • Maxwell: Low Frequency Field Simulator • • • •
Separated Solver “Magnetic” and “Electric” Time Transient and Lumped Circuit: L,R,C Linear and Nonlinear Material Application: Motor, Transformer/Inductor for power machine, Inductive noise
• HFSS: High Frequency Structure Simulator • • • •
Electromagnetic Full Wave Solver Distributed Circuit: S,Z,Y Linear Material Application: Antenna, Transformer/Inductor for signal, Radiation noise
Calculation of Coil Resistance 11.5mohm
l R S
2.87mohm
l
S
Coil • Litz:0.25φ × 384parallel • σ:5.8×107[S/m] • Primary:20 turns • Secondary:10 turns x 2parallel
100mm
Coil slot center
Primary Coil R1: (2*100*pi*10^‐3)/(58000000*(0.25/2)^2*pi*10^‐6)*(1/384)*20 = 1/87 ohm = 11.5mohm Secondary Coil R2: (2*100*pi*10^‐3)/(58000000*(0.25/2)^2*pi*10^‐6)*(1/384)*10/2 = 1/348 ohm = 2.87mohm
Capacitance Calculation Cs 5.24uF k f0 10kHz
L1
L2
Cp 1.93uF
L1 = 0.19267mH L2 = 0.048166mH k = 0.5668
Cp
1 02 L2
Cs
1 Cs: 02 1 k 2 L1 1 /((2*10000*pi)^2*(1‐0.5668^2)*0.0019267) = 1.93*10^‐6 F = 1.93uF
Cp: 1/((2*10000*pi)^2*0.0048166) = 5.24*10^‐6 F = 5.24uF