Wireless Power Transfer Using Maxwell and Simplorer

873 downloads 0 Views 3MB Size Report
Inductive type(~50kW). Ref: EE Times Japan 2009.10. AC. Power. Inverter. Cable. Capacitor. Primary Coil. Secondary Coil. Battery. Rectifier/Charger. Maxwell.
Wireless Power Transfer  Using Maxwell and Simplorer Zed (Zhangjun) Tang Mark Christini Takahiro Koga ANSYS, Inc.

Wireless Power Supply System for EV • Inductive type Inductive type(~15W)

Inductive type(~50kW)

Efficiency

100%

Maxwell Resonance type Simplorer

50%

Battery Rectifier/Charger

AC

Cable 0% Power 1mm        1cm         10cm         1m          10m         100m Inverter

Ref: EE Times Japan 2009.10

Transfer Distance

Capacitor

Secondary Coil Primary Coil

Geometry

Schematic

20kW @ 400V/20kHz

Core

Shield Plate

Coil

Secondary Coil

Primary Coil

Materials

Magnetic Core • Material : FDK 6H40 (Bs=0.53T, μi=2400)

Winding Coil • • • •

Secondary

Litz wire : 0.25φ × 384 parallel turns Conductivity : 5.8×107[S/m] Primary : 10 turns Secondary : 5 turns 400mm 330mm 90mm

Primary 90mm 410mm

500mm

Electromechanical Design Flow ANSYS CFD Thermal

Simplorer System Design

RMxprt Motor Design

PMSYNC

IA A

Torque A

IB

J

D2D

ICA:

A

IC

PP := 6

A

GAIN

Q3D Parasitics

Optimization

PExprt Magnetics

ANSYS  Mechanical Thermal/Stress

Maxwell Electromagnetic Components Model order Reduction Co-simulation Field Solution Model Generation

Maxwell ‐ Introduction • Solves 2-D and 3-D electromagnetic field problems using FEA • Five Solution Types: Electrostatic, Magnetostatic, Eddy Current, Transient Electric, Transient Magnetic • Determines R,L,C, forces, torques, losses, saturation, time-induced effects • Simulation of: Power Magnetics, Inductors, Transformers, Motors,  Generators, Actuators, Bus bars • Co-simulation with Simplorer • Direct link from PExprt, RMxprt • Direct link to ANSYS Mechanical

Simplorer ‐ Introduction Circuits

• Three Basic Simulation Types: • Circuits • Block Diagrams • State Machines • Multi‐domain simulator for electrical,  magnetic, mechanical, fluid, and thermal  systems • Integrated analysis with EM tools (Maxwell,  PExprt, Q3D, RMxprt, HFSS) and thermal  tools (ANSYS CFD, ANSYS Icepack) • Co‐simulation with Maxwell and Simulink • Optimization and Statistical analysis  • VHDL‐AMS capability

R1

R2

50

1k

R3

R4

50

C2

C1

N0002

1k 3.3u

3.3u V0 := 5

12

N0003

N0004

V0 := 0 N0005

Block  Diagrams

I_PART_id CONST

I

UL := 9 LL := ‐9

id_ref

P_PART_id

LIMIT

id

GAIN

yd

G(s)

GAIN

GS2

KP := 0.76 SUM2_6

State  Machines IMP = 0 and RLine.I = IUP

SET: CS1:=-1 SET: CS2:=1 SET: CS3:=-1 SET: CS4:=-1

IMP = 0

IMP = 1 IMP = 0

SET: CS1:=1 SET: CS2:=-1 SET: CS3:=-1 SET: CS4:=-1

IMP = 1

IMP = 1 and RLine.I = IUP

SET: CS1:=-1 SET: CS2:=-1 SET: CS3:=-1 SET: CS4:=-1

Solution Flow Chart • Maxwell + Simplorer Gap

Maxwell Magnetostatic

Sliding

Core, Winding

Maxwell Eddy Current Impedance Model

Maxwell Eddy Current Fields, Losses

Simplorer AC / TR Circuit / Drive / Controller design Waveform, Efficiency, Power  factor, Response

Maxwell / Magnetostatic • L, M, k :  • Self Inductance • Mutual Inductance • Coupling Coefficient

L2 M L1

L1   M M    L2

k=0.54

Maxwell / Magnetostatic Core Shape/Material Number of turns Current Amp. Gap

Inductance L, M Coupling factor k Field Core saturation

Coupling - k

3D_Static_sliding_k

ANSOFT

1.00 Curve Info Matrix1.CplCoef(Current_1,Current_2) Setup1 : LastAdaptive Gap='50mm'

Matrix1.CplCoef(Current_1,Current_2)

0.80

Matrix1.CplCoef(Current_1,Current_2) Setup1 : LastAdaptive Gap='100mm' Matrix1.CplCoef(Current_1,Current_2) Setup1 : LastAdaptive Gap='150mm'

0.60

Matrix1.CplCoef(Current_1,Current_2) Setup1 : LastAdaptive Gap='200mm'

0.40

Mag B

0.20

0.00 0.00

20.00

40.00

60.00

80.00 Sliding [mm]

100.00

120.00

Coupling factor k – sliding gap

140.00

160.00

Maxwell / Magnetostatic Verification for core saturation:

M  k L1 L2

X: Gap [mm] / Y: Input Current [A] / Color: Mutual inductance [nH] Mutual Inductance L12

2D_Static

Mutual Inductance L12

ANSOFT

2D_Static_BH

Matrix1.L(C

Matrix1.L(C

[nH]

[nH] 3.4200e+004

3.4200e+004

2.8500e+004

2.8500e+004 2.2800e+004

100

2.2800e+004

0.10

1.1400e+004 5.7000e+003 0.0000e+000

1.7100e+004

Specification Area

Gap [meter]

1.7100e+004

Specification Area

Gap [mm]

ANSOFT

1.00

1000

1.1400e+004 5.7000e+003 0.0000e+000

0.01

10

Saturation 0.00

1 0.00

20.00

40.00

60.00 Current [A]

Linear Material (Initial permeability)

80.00

100.00

0.00

20.00

40.00

60.00

80.00

Current [A]

Nonlinear Material (BH curve)

100.00

0.60

0.50

Maxwell / Magnetostatic

B (tesla)

0.40

• Verification for core saturation • Core’s BH curve, Mag_B field plot • No magnetic saturation

0.30

Nonlinear BH curve

0.20

0.10

0.00

0.00

100.00

200.00 H (A_per_meter)

300.00

400.00

Mutual Inductance L12

2D_Static_BH

ANSOFT

1.00 Matrix1.L(C [nH] 3.4200e+004 2.8500e+004

0.10 Gap [meter]

~0.4T

2.2800e+004

Specification Area

1.7100e+004 1.1400e+004 5.7000e+003 0.0000e+000

0.01

0.00 0.00

20.00

40.00

60.00 Current [A]

Maximum point : 0.26T

80.00

100.00

Maxwell / Eddy Current • State Space Modeling for Simplorer • Frequency domain impedance(R,L) model for circuit simulation

• AC fields and Losses (after circuit simulation)

Maxwell / Eddy Current Solver AC Characteristics Inductance L, M Coupling factor k Field Core Hysteresis Shield

Core Shape/Material Number of turns Frequency Gap Shield Shape/Material

Core(Power Ferrite)

Shield Plate (Aluminum)

No Shielding

Shielding

Simplorer with Maxwell State Space Model

AC / Frequency domain

TR / Time domain

Efficiency Map • Output/Input Power • Tuned capacitance for each conditions • Blue valley vs sliding indicates poor design  (coil too small)

Gap

Max.96% 90%

Efficiency[%]

P  VI cos  Pout   100% Pin

50%

20%

Sliding

Gap [mm]

Sliding [mm]

Maxwell – Simplorer System Simulation IGBT1

THREE_PHASE1 D5

D7

D1

IGBT3

D3

D9 WM1

3PHAS

PHI = -120°

~

PHI = -240°

R2 Current_1:src Current_2:src

1.72uF

~

R1

W

PHI = 0°

~

WM2 Cs

+

A * sin (2 * pi * f * t + PHI + phi_u)

7.2mOhm

+

C1

D6

D8

D13 Rload

3.6mOhm

13ohm

Current_1:snk Current_2:snk

1000uF

D11

W

Cp

C2

4.96uF IGBT2

D2

IGBT4

1uF

D4

D12

-

D14

D10

+ Battery

LBATT_A1

Wireless Power Transformer

0

Rectify

AC400V

Inverter

0

Battery Curve Info

700.00

WM1.V TR

PWR_Probe1

WM2.V TR

TRANS1 TRANS2 STATE_11_1

PWR Probe

STATE_11_2

PWR_Probe2 SET: TSV4:=1 SET: TSV3:=0 SET: TSV2:=0 SET: TSV1:=1

Dead_Time:=2u DC_Source:=400

SINE1.VAL < TRIANG1.VAL

SET: TSV4:=0 SET: TSV3:=0 DT1 SET: TSV2:=0 SET: TSV1:=0 DEL: DT1##Dead_Time

321.9453

200.00

FML_INIT1

Modulation_Index:=0 Carrier_Freq:=20k Frequency:=20k

rms

281.0066

PWR Probe

Y1 [V]

ICA:

0

-300.00

SINE1 TRANS3 TRANS4 AMPL=Modulation_Index FREQ=Frequency

Controller

STATE_11_4

STATE_11_3

-800.00 2.00

2.20

2.40

Time [ms]

2.60

2.80

3.00

TRIANG1 DT4

AMPL=1 FREQ=Carrier_Freq

SET: TSV4:=0 SINE1.VAL > TRIANG1.VAL SET: TSV3:=0 SET: TSV2:=0 SET: TSV1:=0 DEL: DT4##Dead_Time

SET: TSV4:=0 SET: TSV3:=1 SET: TSV2:=1 SET: TSV1:=0

150.00

Curve Info WM1.I TR

WM1.I WM2.I

125.00

TR

Y1 [A]

WM1.V TR

-0.0037

0.00 -40.2840 -64.8250 -408.7847

TR

-315.0105

-319.5653

WM2.V

Y Axis873.02 rms Y1

TR

rms 41.6165 34.8648

50.00

Y1

34.1140

Y2

276.0822

0.00 Y2

WM2.I

38.9542

500.00 Y1 [A]

Curve Info TR

Y2 [V]

250.00

100.00

0.00

316.6292

-53.6971 -377.1247

-50.00 -500.00

-125.00

-100.00 -250.00

2.900

2.925 MX1: 2.9200

2.950 Time [ms]

2.975

3.000

-1000.00 -150.00

0.0610 MX2: 2.9811

2.00

2.20

2.40

Time [ms]

2.60

2.80

3.00

Maxwell – Simplorer System Simulation IGBT1

THREE_PHASE1 D5

D7

D1

IGBT3

D3

D9 WM1

3PHAS

PHI = -120°

~

PHI = -240°

R2 Current_1:src Current_2:src

1.72uF

~

R1

W

PHI = 0°

~

WM2 Cs

+

A * sin (2 * pi * f * t + PHI + phi_u)

7.2mOhm

+

C1

D6

D8

D13 Rload

3.6mOhm

13ohm

Current_1:snk Current_2:snk

1000uF

D11

W

Cp

C2

4.96uF IGBT2

D2

IGBT4

1uF

D4

D12

-

D14

D10

+ Battery

LBATT_A1

Wireless Power Transformer

0

Rectify

AC400V

Inverter

0

Battery Curve Info

700.00

WM1.V TR

PWR_Probe1

WM2.V TR

TRANS1 TRANS2 STATE_11_1

PWR Probe

STATE_11_2

PWR_Probe2 SET: TSV4:=1 SET: TSV3:=0 SET: TSV2:=0 SET: TSV1:=1

Dead_Time:=2u DC_Source:=400

SINE1.VAL < TRIANG1.VAL

SET: TSV4:=0 SET: TSV3:=0 DT1 SET: TSV2:=0 SET: TSV1:=0 DEL: DT1##Dead_Time

321.9453

200.00

FML_INIT1

Modulation_Index:=0 Carrier_Freq:=20k Frequency:=20k

rms 281.0066

PWR Probe

Y1 [V]

ICA:

0

-300.00

SINE1 TRANS3 TRANS4 AMPL=Modulation_Index FREQ=Frequency

Controller

STATE_11_4

STATE_11_3

-800.00 2.00

2.20

2.40

Time [ms]

2.60

2.80

3.00

TRIANG1 DT4

AMPL=1 FREQ=Carrier_Freq

SET: TSV4:=0 SINE1.VAL > TRIANG1.VAL SET: TSV3:=0 SET: TSV2:=0 SET: TSV1:=0 DEL: DT4##Dead_Time

SET: TSV4:=0 SET: TSV3:=1 SET: TSV2:=1 SET: TSV1:=0

150.00

Curve Info WM1.I TR

WM1.I WM2.I

125.00

TR

Y1 [A]

WM1.V TR

-0.0037

0.00 -40.2840 -64.8250 -408.7847

TR

-315.0105

-319.5653

WM2.V

Y Axis873.02 rms Y1

TR

rms 41.6165 34.8648

50.00

Y1

34.1140

Y2

276.0822

0.00 Y2

WM2.I

38.9542

500.00 Y1 [A]

Curve Info TR

Y2 [V]

250.00

100.00

0.00

316.6292

-53.6971 -377.1247

-50.00 -500.00

-125.00

-100.00 -250.00

2.900

2.925 MX1: 2.9200

2.950 Time [ms]

2.975

3.000

-1000.00 -150.00

0.0610 MX2: 2.9811

2.00

2.20

2.40

Time [ms]

2.60

2.80

3.00

Simplorer:  Design Driver Controller in a  System Level Simulation

Circuit Driver Controller

AC/TR Response Waveform Efficiency

Back to Maxwell: Core Hysteresis Loss Using the  Current Amplitude and Phase from Simplorer

Considering Magnetic Loss tangent

     j    1  j tan   Primary

Core Loss

Secondary Freq [kHz] 1

20.000000

Core1st_Loss Setup1 : LastAdaptive Phase='0deg' 0.909102

Core loss[W]

Hysteresis Loss 

3D_Eddy Core2nd_Loss Setup1 : LastAdaptive Phase='0deg' 0.313144

ANSOFT

Back to Maxwell: Shield Surface Loss Using the  Current Amplitude and Phase from Simplorer

Key Point: Impedance boundary BC Shield Loss Freq [kHz] 1

20.000000

Shield1st_Loss Setup1 : LastAdaptive Phase='0deg' 22.938675

Shield Loss[W] Secondary

Primary Surface Loss

3D_Eddy Shield2nd_Loss Setup1 : LastAdaptive Phase='0deg' 37.886583

ANSOFT

Back to Maxwell: Field Solution Using the  Current Amplitude and Phase from Simplorer XY Plot 1

2D_Eddy

ANSOFT

10.00 Curve Info Mag_B Setup1 : LastAdaptive Freq='20kHz' Phase='0deg'

Mag_B [mTesla]

1.00

0.10

0.01

Distance

0.00

0.00 0.00

0.20

0.40

Distance [meter]

0.60

0.80

Magnetic Field Density

Distance

Magnetic Field Intensity

1.00

Back to Maxwell and Link to HFSS • Maxwell → HFSS Dynamic Link • Magnetic source solved by Maxwell and Link to HFSS field solution • Far Field and Large Area electromagnetic solution • HFSS can handle a car body object as 2D sheet object

Maxwell HFSS

Back to Maxwell and Link to HFSS • Maxwell → HFSS Dynamic Link • Magnetic source solved by Maxwell and Link to HFSS field solution • Far Field and Large Area electromagnetic solution • HFSS can handle a car body object as 2D sheet object

Maxwell HFSS

Thermal /Stress Analysis using Workbench • Maxwell 3D Eddy  Current losses can be  imported directly to  ANSYS steady‐state  thermal and stress  solver for mechanical  analysis

Conclusion • Wireless power transfer for HEV/EV’s can easily be simulated  with ANSYS electromagnetic and circuit simulation tools. • The full solutions requires a system level approach.  • ANSYS Products can also support multi‐physics simulation,  such as combined Thermal / Structure for mechanical analysis. IGBT1

THREE_PHASE1 D5

D7

D1

IGBT3

D3

D9

3PHAS

WM1

+

A * sin (2 * pi * f * t + PHI + phi_u)

~

PHI = 0°

~

PHI = -120°

Cs

WM2 R1

W 1.93uF

(1/87-0.004) ohm

1000uF

~

IGBT2 D6

D8

D2

IGBT4

+ D11 D11

W

Current_2nd_1:snk Current_1st_1:snk

C1 PHI = -240°

R2 Current_1st_1:src Current_2nd_1:src

D13 D13 Rload Rload

(1/348-0.001) ohm

Current_1st_2:src Current_2nd_2:src

Cp

Current_2nd_2:snk Current_1st_2:snk

5.24uF

10ohm 10ohm

C2C2 1e-006farad 1e-006farad D12 D12

D4

- - ++

D14 D14

D10

Battery Battery

LBATT_A1 LBATT_A1

00

0

0

40.00

Curve Info WM1.I

9.4139

WM2.I

10.5939

TR

TRANS1 TRANS2 STATE_11_1

STATE_11_2

TR

rms

20.00

FML_INIT1

Modulation_Index:=0 Carrier_Freq:=10k Frequency:=10k

SET: TSV4:=1 SET: TSV3:=0 SET: TSV2:=0 SET: TSV1:=1

Dead_Time:=2u DC_Source:=200

SET: TSV4:=0 DT1 SINE1.VAL < TRIANG1.VAL SET: TSV3:=0 SET: TSV2:=0 SET: TSV1:=0 DEL: DT1##Dead_Time

Y1 [A]

ICA:

0.00

SINE1 TRANS3 TRANS4 AMPL=Modulation_Index FREQ=Frequency

STATE_11_4

STATE_11_3

SET: TSV4:=0 SET: TSV3:=0 SINE1.VAL > TRIANG1.VAL SET: TSV2:=0 SET: TSV1:=0 DEL: DT4##Dead_Time

SET: TSV4:=0 SET: TSV3:=1 SET: TSV2:=1 SET: TSV1:=0

-20.00

TRIANG1 DT4

AMPL=1 FREQ=Carrier_Freq

-40.00

0.00

0.25

0.50

0.75

1.00 Time [ms]

1.25

1.50

1.75

300.00

156.0455 TR TR

Y1 [A]

TR

27.9814 -0.0090 -1.2036 -6.0797

0.00

1.3406 -0.5141T R

WM2.I

Y Axis

9.3501

Y1

10.5176 100.00

WM1.V

Y2

153.6594

WM2.V

Y2

119.4615

0.00

-20.00

-100.00

-40.00

-200.00

1.90

1.92

1.94

Time [ms]

1.96

1.98 MX1: 1.9753 0.0030 MX2: 1.9783

2.00

Curve Info rms WM1.V 154.9045

TR

200.00 rms

Y1

TR

WM2.V 120.2425

100.00

Y1 [V]

Curve Info WM1.I

131.1979 20.00

Y2 [V]

40.00

2.00

-100.00

-300.00 0.00

0.25

0.50

0.75

1.00 Time [ms]

1.25

1.50

1.75

2.00

Electromagnetic tools

Which is the optimal simulation tool ?  “Low Freq.”   

Maxwell

“High Freq.”

HFSS

Differentiating Features • Maxwell: Low Frequency Field Simulator • • • •

Separated Solver “Magnetic” and “Electric” Time Transient and Lumped Circuit: L,R,C  Linear and Nonlinear Material Application: Motor, Transformer/Inductor for power machine, Inductive noise

• HFSS:  High Frequency Structure Simulator • • • •

Electromagnetic Full Wave Solver Distributed Circuit: S,Z,Y Linear Material Application:  Antenna, Transformer/Inductor for signal, Radiation noise

Calculation of Coil Resistance 11.5mohm

l R S

2.87mohm



l

S

Coil • Litz:0.25φ × 384parallel • σ:5.8×107[S/m] • Primary:20 turns • Secondary:10 turns x 2parallel

100mm

Coil slot center

Primary Coil   R1: (2*100*pi*10^‐3)/(58000000*(0.25/2)^2*pi*10^‐6)*(1/384)*20 = 1/87 ohm = 11.5mohm Secondary Coil   R2: (2*100*pi*10^‐3)/(58000000*(0.25/2)^2*pi*10^‐6)*(1/384)*10/2 = 1/348 ohm = 2.87mohm

Capacitance Calculation Cs 5.24uF k f0 10kHz

L1

L2

Cp 1.93uF

L1 = 0.19267mH L2 = 0.048166mH k = 0.5668

Cp 

1 02 L2

Cs 

1 Cs: 02 1  k 2 L1 1 /((2*10000*pi)^2*(1‐0.5668^2)*0.0019267) = 1.93*10^‐6 F = 1.93uF



Cp: 1/((2*10000*pi)^2*0.0048166) = 5.24*10^‐6 F = 5.24uF



Suggest Documents