A Power Comparison for Testing Normality - Semantic Scholar

3 downloads 0 Views 240KB Size Report
Omnibus test statistics for normality. Modified JarqueBera test statistic. Power study. Monte Carlo simulation. Alternative distributions are contaminated normal ...
A Power Comparison for Testing Normality .

. Shigekazu Nakagawa, Hiroki Hashiguchi, and Naoto Niki Kurashiki University of Science and the Arts Saitama University Tokyo University of Science

COMPSTAT2010, Paris-France, Aug. 22-27

Nakagawa, Hashiguchi, and Niki ()

A Power Comparison for Testing Normality

COMPSTAT2010, Paris

1 / 24

Table of Contents

Background · Motivation · Problem Omnibus test statistics for normality Modified Jarque–Bera test statistic

Power study Monte Carlo simulation Alternative distributions are contaminated normal distributions

Summary

Nakagawa, Hashiguchi, and Niki ()

A Power Comparison for Testing Normality

COMPSTAT2010, Paris

2 / 24

Background Jarque–Bera (1987) pointed out that a Lagrange multiplier test is equivalent to JB test against the Pearson distributions.

Jarque–Bera

0.4

(n → ∞) under H0 .

0.3

.

0.0

However, the χ2 approximation does not work well. Unfortunately, a normalizing tr. has not been given yet.

Histgram of JB: n = 100 curve in blue: pdf of χ2 2

0.2

Motivation

0.1

JB ∼ χ22

0.5

(√ 2 ) (b2 − 3)2 b1 JB = n + , 6 24 √ 3/2 where for a random sample (X1 , X2 , . . . , Xn ), b1 = m3 /m2 , b2 = m4 /m22 , ∑n ¯ j , j = 2, 3, 4. mj = (1/n) i=1 (Xi − X) .

0

Nakagawa, Hashiguchi, and Niki ()

A Power Comparison for Testing Normality

2

4

6

8

COMPSTAT2010, Paris

10

3 / 24

Proposed test statistic Nakagawa et al. (2007) proposed a modified version of the Jarque–Bera test.

Modified Jarque–Bera test ′

JB =

√ 2 b1 6

+

b22

.

24

A normalizing tr. of the null dist. for J B ′ has been derived. .

2 0

1

When is the power of J B ′ test superior to that of JB? As H1 , the contaminated normal distributions are considered.

3

4

Our goal

Nakagawa, Hashiguchi, and Niki ()

A Power Comparison for Testing Normality

0.5

1.0

1.5

COMPSTAT2010, Paris

2.0

.

0.0

4 / 24

Power study 1 Let X1 , X2 , . . . , Xn be i.i.d. rv with a cdf F . Φ: the cdf of the standard normal distribution

Omnibus testing for normality (two sided) (

H0 : F (x) = Φ H1 : F (x) ̸= Φ

x−µ

)

σ ) ( x−µ σ

(∀x ∈ R) (∃x ∈ R)

µ and σ may be known or unknown

.

We consider J B ′ , J B, and Shapiro–Wilk SW tests. As H1 , contaminated normal distributions are considered: F = (1 − p)N (µ0 , σ02 ) + pN (µ, σ 2 ) . asymmetric CN covers a broad range of distributions, symmetric and ones. Nakagawa, Hashiguchi, and Niki ()

A Power Comparison for Testing Normality

COMPSTAT2010, Paris

5 / 24

Power study 2 i.i.d.

H0 :X1 , X2 , . . . , Xn ∼ N (0, 1) i.i.d.

H1 :X1 , X2 , . . . , Xn ∼ (1 − p)N (0, 1) + pN (µ, σ 2 ) Ex. 1 2 3 4 Ex. 5 6 Ex. 7

n 100 100 200 50 n 50 50 n 50

µ 0 0 0 3 σ 4 1 µ 0

p σ 0.10 1, 2, 3, 4, 6 Sym. 0.50 1, 2, 3, 4, 6 Sym. 0.80 1, 2, 3, 4, 6 Sym. 0.50 1, 2, 3, 4, 6 Asym. p µ 0.05 0, 1, 2, 3, 4 Asym. 0.50 0, 1, 2, 3, 4 Sym. σ p 4 0, 0.1, . . . , 1 Sym.

significance level: α = 0.1 the number of replications: 104 Omnibus test statistics: J B, J B ′ , and SW Nakagawa, Hashiguchi, and Niki ()

A Power Comparison for Testing Normality

COMPSTAT2010, Paris

6 / 24

Ex.1: n = 100, µ = 0, p = 0.1, σ = 1, 2, 3, 4, 6 √

−4 −2

0

2

4

σ=2

0.3 0.2 0.1 0.0

0.1

0.2

0.3

0.4

6 19.33

0.4

1 3.00

0.0

0.0

0.1

0.2

0.3

0.4

σ β2

β1 = 0 2 3 4 4.44 8.33 12.72

−4 −2

0

2

4

σ=4

−4 −2

0

2

4

σ=6

curves in red: pdf of N (0, 1). curves in blue: pdf of F = (1 − p)N (0, 1) + pN (µ, σ 2 ). Nakagawa, Hashiguchi, and Niki ()

A Power Comparison for Testing Normality

COMPSTAT2010, Paris

7 / 24

Ex. 1: Powers of J B ′ , J B, SW

1.0

n=100, p=0.1,µ=0.0

0.0

0.2

0.4

power

0.6

0.8

SW JBP JB

1

β2 = 3.0 Nakagawa, Hashiguchi, and Niki ()

2

3

4

σ A Power Comparison for Testing Normality

6

−→heavy tails COMPSTAT2010, Paris

8 / 24

Ex. 2: n = 100, µ = 0, p = 0.5, σ = 1, 2, 3, 4, 6 √

−6

−2 0

2

4

6

0.3 0.0

0.1

0.2

0.3 0.2 0.1 0.0

0.0

0.1

0.2

0.3

0.4

6 5.68

0.4

β1 = 0 2 3 4 4.08 4.92 5.34

1 3.00

0.4

σ β2

−6

σ=2

−2 0

2

4

6

σ=4

−6

−2 0

2

4

6

σ=6

curves in red: pdf of N (0, 1). curves in blue: pdf of F = (1 − p)N (0, 1) + pN (µ, σ 2 ). Nakagawa, Hashiguchi, and Niki ()

A Power Comparison for Testing Normality

COMPSTAT2010, Paris

9 / 24

Ex. 2: Powers of J B ′ , J B, SW

1.0

n=100, p=0.5,µ=0.0

0.0

0.2

0.4

power

0.6

0.8

SW JBP JB

1

β2 = 3.0 Nakagawa, Hashiguchi, and Niki ()

2

3

4

σ A Power Comparison for Testing Normality

6

−→heavy tails COMPSTAT2010, Paris

10 / 24

Ex. 3: n = 200, µ = 0, p = 0.8, σ = 1, 2, 3, 4, 6 √

−6

−2

2 4 6

0.3 0.0

0.1

0.2

0.3 0.2 0.1 0.0

0.0

0.1

0.2

0.3

0.4

6 3.70

0.4

β1 = 0 2 3 4 3.37 3.56 3.64

1 3.00

0.4

σ β2

−6

σ=2

−2

2 4 6

σ=4

−6

−2

2 4 6

σ=6

curves in red: pdf of N (0, 1). curves in blue: pdf of F = (1 − p)N (0, 1) + pN (µ, σ 2 ). Nakagawa, Hashiguchi, and Niki ()

A Power Comparison for Testing Normality

COMPSTAT2010, Paris

11 / 24

Ex. 3: Powers of J B ′ , J B, SW

1.0

n=200, p=0.8,µ=0.0

0.0

0.2

0.4

power

0.6

0.8

SW JBP JB

1

β2 = 2.04 Nakagawa, Hashiguchi, and Niki ()

2

3

4

σ A Power Comparison for Testing Normality

6

−→heavy tails COMPSTAT2010, Paris

12 / 24

Ex. 4: n = 50, µ = 3, p = 0.5, σ = 1, 2, 3, 4, 6 3 0.92 3.72

4 0.96 4.37

0

2

4

6

8

0.3 0.0

0.1

0.2

0.3 0.0

0.1

0.2

0.3 0.2 0.1 0.0 −4

−4

σ=2

6 0.83 5.11

0.4

2 0.65 2.85

0.4

1 0.00 2.04

0.4

σ √ β1 β2

0

2

4

6

8

σ=4

−4

0

2

4

6

8

σ=6

curves in red: pdf of N (0, 1). curves in blue: pdf of F = (1 − p)N (0, 1) + pN (µ, σ 2 ). Nakagawa, Hashiguchi, and Niki ()

A Power Comparison for Testing Normality

COMPSTAT2010, Paris

13 / 24

Ex. 4: Powers of J B ′ , J B, SW

1.0

n=50, p=0.5,µ=3.0

0.0

0.2

0.4

power

0.6

0.8

SW JBP JB

√ β1 = 0 β2 = 2.04

1

Nakagawa, Hashiguchi, and Niki ()

2

3

4

σ A Power Comparison for Testing Normality

√ 6 β1 = 0.83 β2 = 5.11 COMPSTAT2010, Paris

14 / 24

Ex. 5: n = 50, σ = 4, p = 0.05, µ = 0, 1, 2, 3, 4 1 0.90 14.12

2 1.71 15.75

3 2.35 17.65

−5

0

5

10

0.3 0.0

0.1

0.2

0.3 0.0

0.1

0.2

0.3 0.2 0.1 0.0 −10

−10

µ=0

4 2.84 19.24

0.4

0 0.00 13.47

0.4

µ β1 β2

0.4



−5

0

5

10

µ=2

−10

−5

0

5

10

µ=4

curves in red: pdf of N (0, 1). curves in blue: pdf of F = (1 − p)N (0, 1) + pN (µ, σ 2 ). Nakagawa, Hashiguchi, and Niki ()

A Power Comparison for Testing Normality

COMPSTAT2010, Paris

15 / 24

Ex. 5: Powers of J B ′ , J B, SW

1.0

n=50, p=0.05,σ=4.0

0.0

0.2

0.4

power

0.6

0.8

SW JBP JB

√ 0 β1 = 0 β2 = 13.47 Nakagawa, Hashiguchi, and Niki ()

1

2

3

µ

A Power Comparison for Testing Normality

√ 4 β1 = 2.84 β2 = 19.24 COMPSTAT2010, Paris

16 / 24

Ex. 6 : n = 50, σ = 1.0, p = 0.5, µ = 0, 1, 2, 3, 4 √

−10

−5

0

5

10

0.3 0.0

0.1

0.2

0.3 0.2 0.1 0.0

0.0

0.1

0.2

0.3

0.4

4 1.72

0.4

β1 = 0 1 2 3 2.92 2.50 2.04

0 3.00

0.4

µ β2

−10

µ=0

−5

0

5

10

µ=2

−10

−5

0

5

10

µ=4

curve in red: pdf of N (0, 1). curves in blue: pdf of F = (1 − p)N (0, 1) + pN (µ, σ 2 ). Nakagawa, Hashiguchi, and Niki ()

A Power Comparison for Testing Normality

COMPSTAT2010, Paris

17 / 24

Ex. 6: Powers of J B ′ , J B, SW

1.0

n=50, p=0.5,σ=1.0

0.0

0.2

0.4

power

0.6

0.8

SW JBP JB

0

β2 = 3.0 Nakagawa, Hashiguchi, and Niki ()

1

2

3

µ

A Power Comparison for Testing Normality

4

β2 = 1.72 COMPSTAT2010, Paris

18 / 24

Ex. 7: n = 50, σ = 4.0, µ = 0, p = 0.0, 0.1, . . . , 1.0 √

−10

−5

0

5

10

0.3 0.0

0.1

0.2

0.3 0.2 0.1 0.0

0.0

0.1

0.2

0.3

0.4

1.00 3.00

0.4

β1 = 0 0.20 0.50 0.70 9.75 5.34 4.07

0.00 3.00

0.4

p β2

−10

p = 0.0

−5

0

5

10

p = 0.5

−10

−5

0

5

10

p = 1.0

curves in red: pdf of N (0, 1). curves in blue: pdf of F = (1 − p)N (0, 1) + pN (µ, σ 2 ). Nakagawa, Hashiguchi, and Niki ()

A Power Comparison for Testing Normality

COMPSTAT2010, Paris

19 / 24

Ex. 7: Powers of J B ′ , J B, SW

1.0

n=50,µ=0.0,σ=4.0

0.0

0.2

0.4

power

0.6

0.8

SW JBP JB

0

β2 = 13.47 Nakagawa, Hashiguchi, and Niki ()

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p

A Power Comparison for Testing Normality

0.9

1

β2 = 3.29 COMPSTAT2010, Paris

20 / 24

Summary Ranking: Ex. JB J B′ SW 1 2

1 2 1 3 S HT

2 3 1 2 S HT

3 2 1 1 S HT

4 2 3 1 A HT∼ST

5 2 1 3 A HT

6 2 3 1 S ST

7 3 1 2 S HT

JB ′ test is the best for symmetric dist. with heavy tails. JB ′ test is superior to JB test except for dist. with short tails. The power of JB ′ and JB is poor for dist. with short tails.

1 2

S:Symmetric, A:Asymmetric HT:Heavy tails, ST:Short tails

Nakagawa, Hashiguchi, and Niki ()

A Power Comparison for Testing Normality

COMPSTAT2010, Paris

21 / 24

Normalizing tr. of the null dist. for JB ′ Normalizing tr. of the null dist. for JB ′ Under the null hypothesis H0 , let 8 A=6+ √ β1 (JB ′ )

[

2 + √ β1 (JB ′ )



4 1 + (√ )2 β1 (JB ′ )

] ,

and then, a transformed variate )1/3  √ ) ( ( 1 − (2/A)  / 2/9A  1− 2 √ − 9A 1 + Z 2/(A − 4) 

is asymptotically distributed as a standard normal distribution, where Z =



β1 (JB ′ )

=

JB ′ − µ′1 (JB ′ ) √ µ2 (JB ′ )

and

. √ √ √ ( ) 8 6 2750 6 1 33968 6 1 1 + − + O , 9 9 n1/2 n3/2 n5/2 n7/2

Nakagawa, Hashiguchi, and Niki ()

A Power Comparison for Testing Normality

COMPSTAT2010, Paris

22 / 24

Shapiro–Wilk test

SW =

(∑

( ))2 . ai X(n−i+1) − X(i) ) ∑n ( ¯ 2 i=1 Xi − X

[n/2] i=1

.

0

20

40

60

X(1) ≤ X(2) ≤ · · · ≤ X(n) are the ordered statistics.

80

Shapiro–Wilk test

0.95

Nakagawa, Hashiguchi, and Niki ()

A Power Comparison for Testing Normality

0.96

0.97

0.98

0.99

COMPSTAT2010, Paris

1.00

23 / 24

Related works

In 1987, Jarque and Bera proposed the J B test. Jarque, C. M. and Bera, A. K.A test for normality of observations and regression residuals. Inter. Statist. Rev., 55(2), 163–172, 1987.

In 2007, Nakagawa et. al. proposed a modified version of the Jarque–Bera test J B ′ . Nakagawa, S. and Niki, N. and Hashiguchi, H. An Omnibus test for normality. Proc of the ninth Japan-China sympo. on statist., 191–194,2007.

.................................................................. In 2007, a power comparison was conducted through Monte Carlo simulation assuming the contaminated normal distributions as H1 . Thadewald, T. and Buning, H. Jarque-Bera test and its competitors for testing normality-A power comparison J. of Appl. Statist., 34(1), 87–105, 2007.

Nakagawa, Hashiguchi, and Niki ()

A Power Comparison for Testing Normality

COMPSTAT2010, Paris

24 / 24

Suggest Documents