Computation of Generalized Aspect of Parallel ... - Univ. Nantes

3 downloads 10222 Views 2MB Size Report
Jun 14, 2011 - •Domain with multiple solutions contains singular ... Maximal singularity-free region within the domain .... and singularity free check succeeded.
Computation of Generalized Aspect of Parallel Manipulators June 14, 2011 Daisuke ISHII, Christophe JERMANN, Alexandre GOLDSZTEJN, LINA Université de Nantes 1

l Pose Error Problem

Parallel Mechanism (Manipulator) Conclusions and Future Works

’d) • Closed loop mechanism in which the end-effector

is connected to the base by at least two independent kinematic chains End-effector Moving Platform Pi!

F1,n1

Pi

3),

! Fi,j

(1)

Fi,j

Leg 1

Leg i

Leg m

ation

rigin of

Fi,1

F1,1

Fm,1

Fixed Base

Base

Kinematic chains: Coupling of links via kinematic pairs

nding the Maximal Pose Error

2010/06/15

12 / 24

Delta robot [80] 2

Parallel vs. Serial Manipulators

Delta robot Kinematic chain(s) Workspace Accuracy Payload Stiffness

Puma robot Parallel manip. Closed Limited Good High High

Serial manip. Opened Large Low Low Low

3

Aspect Computation

• Parallel manipulators may have multiple inverse and direct kinematic solutions

- A given end-effector pose

→ several control inputs

- A given control input

→ several end-effector poses

• Domain with multiple solutions contains singular solutions

• Aspect [Chablat, 2007]:

Maximal singularity-free region within the domain

➡ Our aim: Rigorous computation of aspects 4

nitial domain ([u], [x]) ∈ IR , box width ! > 0 Example: 2-RPR Manipulator , . . . , [xp ]} • Inputs: (x ,x2) - Variables end-effector 2n

1

‣ Control Variables: u1, u2 ‣ Pose Variables: x1, x2

u1

u2

Fig. 1 BranchAndPrune algorithm. Revolute Prismatic - Initial domain: u1

[2, 6], u2

x1, x2

[3, 9],

[-20, 20]

- Model:

f (u, x) =

!

2 u1

(0,0)

2 (x1

− 2 u2 − ((x1 −

joints

joints

base

2 + x2 ) 2 2 9) + x2 )

"

(9,0)

=0 5

nitial domain ([u], [x]) ∈ IR , box width ! > 0 Example: 2-RPR Manipulator , . . . , [xp ]} • Inputs: (x ,x2) - Variables end-effector 2n

1

‣ Control Variables: u1, u2 ‣ Pose Variables: x1, x2

u1

u2

Fig. 1 BranchAndPrune algorithm. Revolute Prismatic - Initial domain: u1

[2, 6], u2

x1, x2

[3, 9],

[-20, 20]

- Model:

f (u, x) =

!

2 u1

(0,0)

2 (x1

− 2 u2 − ((x1 −

joints

joints

base

2 + x2 ) 2 2 9) + x2 )

"

(9,0)

=0 6

Example: 2-RPR Manipulator

• Safe configuration • Singular configuration

- Change of control variables

robot breakdown

Algebraic characterization of singularity: det Dx f(u,x) = 0 or det Du f(u,x) = 0 7

Singularity Free Connected Components (SFCCs)

• Consider a manipulator modeled with 2n variables (u, x)

R2n

• An SFCC is a set of boxes [u]×[x] IR2n that are u - connected f(u,x)=0 - not containing any singular configuration

- proved to contain configurations

[u]

• SFCC is an inner

approximation of aspect

- Robot can move safely within

[x]

x

the x projection of a given SFCC 8

Example: 2-RPR Manipulator

• Output: - 2 SFCCs (projected on the workspace)

- Possibly singular region - Uncertified reachable region x2 x1

9

!

"

RR-RRR u21 − (x21 +Example: x22 ) =0 2 2 2 u2 − ((x1 − 9) + x2 ) • 2-dimensional variables (x1,x2) 5

2 Initial domain: • CX i cos x3 − CY i sin x3 − AX i − Li cos ui ) +

ui [-pi, pi], sin x3 + CY i cos x3 − AY i − Li sin ui )2 − Mi2 = 0 xi [-20, 20] i ∈ {1, 2, 3} 8

• Model: 



(x1 − 8 cos u1 ) +(x2 − 8 sin u1 )2 − 52    = 0 2  (x1 − 5 cos u2 − 9)  2 2 +(x2 − 5 sin u1 ) − 8 2

u1

(0,0)

8

5

u2

(9,0)

10

− AX − L cos u ) + (x + CX sin x + CY cos x − AY − L 2

Example: RR-RRR

• Example of

parallel singularity

• Example of

serial singularity

Change of control variables robot breakdown

Change of pose variables workspace limit

det Dx f(u,x) = 0

det Du f(u,x) = 0 11

Example: RR-RRR

• Computed 10 SFCCs: - Guarantees that there exists 10 aspects

12

Overview of the Proposed Method Model, initial domain, precision

Solving process Branch-and-Prune framework

Existence proving of solutions Singularity checking Management of neighboring boxes

Post process Enumeration of connected components

SFCCs, singular regions, uncertified regions

Visualization 13

Branch-and-Prune Framework Alternates search (branch) and contraction (prune) Initial domain

Prune

constraint

Branch

Set of ε-boxes

Prune

14

Existence Proof of a Configuration Fig. 1 BranchAndPrune algorithm. 2n

• Consider boxes [u]×[x]

IR ,

a continuously differentiable 2n n function f : R → R , ! ^ 2 2 2 a real vector u [u], and

u f(u,x)=0

"

u1 − (x1 + x2 ) [u] 2 2 2 an interval u Jacobian − 9) + x2 ) 2 − ((x1matrix [Ju]

IR

n×n

that contains all

=0

Duf(u,x) for (u,x) 2 [u]×[x] 2

u +x −1=0

derivative w.r.t. u

[x]

x

• Then, x [x] u [u] (f(u, x)=0), whenever u ˆ + Γ([J], ([u] − u ˆ), f (ˆ u, [x])) ⊆ int[u]

where Γ([A],[v],[b]) is the Gauss-Seidel operator

15

!

"

2 2 2 u − (x + x ) 1 1 2 Existence Proof of a Configuration =0 2 2 2 u2 − ((x1 − 9) + x2 )

• Example: - Model:

u +x −1=0 2

2

- Computation result (ε=0.2):

u ˆ + Γ([J], ([u] − u ˆ), f (ˆ u, [x])) ⊆ int[u] Proved boxes

Unproved boxes u x 16

Singularity Checking

• Consider a manipulator modeled by f(u,x)=0, where f : R2n→Rn

• A configuration (u,x)

R

2n

exhibits

- serial singularity iff det Ju = 0 - parallel singularity iff det Jx = 0 where Ju Jx

R

n×n

is Jacobian w.r.t. u and

Rn×n is Jacobian w.r.t. x 17

Guaranteeing Regularity

• Interval of configurations [u]×[x]

IR2n is

singularity free if 0

[det Ju] and 0

[det Jx] hold

computed from an interval extension of Jacobian matrix Singularity free boxes Possibly singular boxes 0 [det Ju] 0 [det Jx] 18

Fig. 1 BranchAndPrune algorithm.

Inner Testing

• A box [u]×[x]

IR

2n

is contained in an aspect

! " existence proving succeeded 2 2 2

x1 + x2 − u1 =succeeded 0 2 free 2 check 2 and singularity (x1 − 9) + x2 − u2

• Using inner test as a search termination criterion 2 2 • Example: x + u − 1 = 0 Proved & SF boxes

u + Γ(J, ([u] − u ), f (u , [u])) ⊆ int[u] !

!

!

Unproved & SF boxes

Possibly singular boxes u x

19

Overview of the Proposed Method Model, initial domain, precision

Solving process Branch-and-Prune framework

Existence proving of solutions Singularity checking Management of neighboring boxes

Post process Enumeration of connected components

SFCCs, singular regions, uncertified regions

Visualization 20

Enumeration of SFCCs

• Management of neighboring boxes during the search by Branch-and-Prune

• After the search, we apply a graph enumeration method to the set of inner boxes SFCC 1

SFCC 2

SFCC 3

SFCC 4

u x

21

Example: 3-RPR

• 3 dimensional planer manipulator (u2)

(x1,x2)

(x3) (u3)

(u1)

22

Example: 3-RPR

• Computed spiral workspace:

23

Example: 3-RRR

• Computed with fixed orientation: x3 = 0 (u2)

(x1,x2)

(u1)

(x3)

(u3) 24

Example: 3-RRR

• Computed 25 aspects:

25

Experimental Results 2-RPR

RRR

2

2

10

2

?

0.1

0.1

0.1

0.1

0.01

2

562 (2)

1456 (10)

49882 (2)

51901 (25)

# boxes

1240

31590

87584

13677836

6081438

time (s)

0.206

13.264

35.784

7913

5050

theoretical

# aspects

prec # SFCCs (filtered)

RR-RRR 3-RPR

3-RRR (x3=0)

26

Conclusion

• We present a tool that supports - simple modeling of parallel manipulators - validated computation and visualization of workspace, working modes, and generalized aspects

• Experimental results indicate the correct number of generalized aspects

27

References • D. Chablat and P. Wenger: Working Modes and Aspects in Fully Parallel Manipulators, ICRA’98, pp. 1964-1969, 1998.

• D. Chablat and P. Wenger: The Kinematic Analysis of a

Symmetrical Three-Degree-of-Freedom Planar Parallel Manipulator, Symp. on Robot Design, Dynamics and Control, pp. 1-7, 2004.

• A. Goldsztejn and L. Jaulin: Inner Approximation of the Range of Vector-Valued Functions, Reliable Computing, vol. 14, pp. 1-23, 2010.

• A. Goldsztejn and L. Jaulin: Inner and Outer

Approximations of Existentially Quantified Equality Constraints, CP’06, pp. 198-212, 2006. 28

Suggest Documents