A Fully Discrete Symmetric Finite Volume Element Approximation of ...

1 downloads 0 Views 2MB Size Report
Dec 30, 2012 - to be the medicenter (the center of gravity or centroid) of the finite element and the points are chosen to be the midpoints of theΒ ...
Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 2013, Article ID 175904, 7 pages http://dx.doi.org/10.1155/2013/175904

Research Article A Fully Discrete Symmetric Finite Volume Element Approximation of Nonlocal Reactive Flows in Porous Media Zhe Yin and Qiang Xu School of Mathematical Sciences, Shandong Normal University, Jinan 250014, China Correspondence should be addressed to Zhe Yin; [email protected] Received 9 November 2012; Accepted 30 December 2012 Academic Editor: J. Jiang Copyright Β© 2013 Z. Yin and Q. Xu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We study symmetric finite volume element approximations for two-dimensional parabolic integrodifferential equations, arising in modeling of nonlocal reactive flows in porous media. It is proved that symmetric finite volume element approximations are convergent with optimal order in 𝐿2 -norm. Numerical example is presented to illustrate the accuracy of our method.

1. Introduction In this paper, we consider symmetric finite volume element discretizations of the following initial value problem for the operator equation for 𝑒 = 𝑒(𝑑): 𝑑

𝑒𝑑 + A𝑒 + ∫ B (𝑑, 𝑠) 𝑒 (𝑠) 𝑑𝑠 = 𝑓 (𝑑) , 0

𝑒 (0) = 𝑒0 ,

(1)

where A is a strongly elliptic differential operator and B is a second-order elliptic differential operator in space. The operators A and B incorporate Dirichlet and Neumann boundary conditions. The problem (1) is an abstract form of an initial boundary value problem for a parabolic integrodifferential equation. This model is very important in the transport of reactive and passive contaminats in aquifers, an area of active interdisciplinary research of mathematicians, engineers, and life scientists. From a mathematical point of view, the evolution of either a passive or reactive chemical within a velocity field exhibiting strong variation on many scales defies representation using classical Fickian theory. The evolution of a chemical in such a velocity field when modeled by Fickian-type theories leads to a dispersion tensor whose magnitude depends upon the time scales of observation. In order to avoid such difficulty, a new class of nonlocal models of transport have been derived. In this case, the constitutive relations involve either integrals or higher order derivatives, which take multiscales into consideration. We refer to [1, 2] for the derivation

of the mathematical models and for the precise hypotheses and analysis. Mathematical formulations of this kind also arise naturally in various engineering models, such as nonlocal reactive transport in underground water flows in porous media [3], heat conduction, radioactive nuclear decay in fluid flows [4], non-Newtonian fluid flows, or viscoelastic deformations of materials with memory (in particular polymers) [5], semiconductor modeling [6], and biotechnology. One very important characteristic of all these models is that they all express a conservation of a certain quantity (mass, momentum, heat, etc.) in any moment for any subdomain. This in many applications is the most desirable feature of the approximation method when it comes to the numerical solution of the corresponding initial boundary value problem. This type of equations has been extensively treated by finite element, finite difference, and collocation methods in the last years [7–12]. The finite element method conserves the flux approximately; therefore, in the asymptotic limit (i.e., when the grid step-size tends to zero) it produces adequate results. However, this could be a disadvantage when relatively coarse grids are used. Perhaps the most important property of the finite volume method is that it exactly conserves the approximate flux (heat, mass, etc.) over each computational cell. This important property combined with adequate accuracy and ease of implementation has contributed to the recent renewed interest in the method. The theoretical framework and

2

Mathematical Problems in Engineering

the basic tools for the analysis of the finite volume element methods have been developed in the last decade (see, e.g., [13–19]). Reference [20] has given the finite volume element approximations of the problem (1). But in a general case the coefficient matrix of the linear system obtained from the finite volume element method is not symmetric. In this paper, we study symmetric modified finite volume element approximations for two-dimensional parabolic integrodifferential equations, arising in modeling of nonlocal reactive flows in porous media. It is proved that symmetric modified finite volume element approximations are convergent with optimal order in 𝐿2 -norm. Throughout this paper we use 𝐢 (without or with subscript or superscript) to denote a generic constant independent of the discretization parameter.

2. Fully Discrete Symmetric Finite Volume Element Scheme Consider the following initial boundary value problem: find 𝑒 = 𝑒(π‘₯, 𝑑) such that 𝑑

𝑒𝑑 βˆ’βˆ‡ β‹… (π΄βˆ‡π‘’)βˆ’βˆ« βˆ‡ β‹… (π΅βˆ‡π‘’ (𝑠)) 𝑑𝑠 = 𝑓, 0

𝑒 (π‘₯, 𝑑) = 0,

(π‘₯, 𝑑) ∈ Ξ© Γ— (0, 𝑇] ,

(π‘₯, 𝑑) ∈ πœ•Ξ© Γ— (0, 𝑇] ,

𝑒 (π‘₯, 0) = 𝑒0 (π‘₯) ,

π‘₯ ∈ Ξ©, (2)

where Ξ© is a bounded polygonal domain in 𝑅2 with boundary πœ•Ξ©. 𝐴 = {π‘Žπ‘–π‘— (π‘₯)} is a 2 Γ— 2 real-valued symmetric and uniformly positive definite matrix, 𝐡 = {𝑏𝑖𝑗 (π‘₯, 𝑑, 𝑠)} is a 2 Γ— 2 matrix. 𝑓 = 𝑓(π‘₯, 𝑑) and 𝑒0 (π‘₯) are known functions, which are assumed to be smooth so that problem (2) has a unique solution in a certain Sobolev space. The problem (2) can be written in the form (1) by introducing the operators A : 𝐻01 (Ξ©) β†’ π»βˆ’1 (Ξ©) and B : 𝐻01 (Ξ©) β†’ π»βˆ’1 (Ξ©): (A𝑒, 𝑣) = ∫ 𝐴 (π‘₯) βˆ‡π‘’ β‹… βˆ‡π‘£ 𝑑π‘₯, Ξ©

(3)

(B𝑒, 𝑣) = ∫ 𝐡 (π‘₯, 𝑑, 𝑠) βˆ‡π‘’ β‹… βˆ‡π‘£ 𝑑π‘₯, Ξ©

𝐻01 (Ω)

and for any 𝑑, 𝑠 ∈ (0, 𝑇). for all 𝑣 ∈ We assume that Ξ© is a convex polygonal domain. The domain Ξ© is split into triangular finite elements 𝐾. The elements 𝐾 are considered to be a closed set, and the triangulation is denoted by Tβ„Ž . Then Ξ© = β‹ƒπΎβˆˆTβ„Ž 𝐾 and π‘β„Ž denotes all nodes or vertices: π‘β„Ž = {𝑝 : 𝑝 is a vertex of element, 𝐾 ∈ Tβ„Ž and 𝑝 ∈ Ξ©} . (4) In order to accommodate Dirichlet boundary conditions, we will also need the set of vertices that are internal to Ξ©, denoted by π‘β„Ž0 , that is, π‘β„Ž0 = π‘β„Ž ∩ Ξ©. For a given vertex π‘₯𝑖 , we define by Ξ (𝑖) the index set of all neighbors of π‘₯𝑖 in π‘β„Ž .

For a given triangulation Tβ„Ž , we construct a dual mesh Tβˆ—β„Ž based upon Tβ„Ž whose elements are called control volumes. In the finite volume methods, there are various ways to introduce the control volumes. Almost all approaches can be described in the following general scheme: in each triangle 𝐾 ∈ Tβ„Ž a point π‘ž is selected; similarly, on each of the three edges π‘₯𝑖 π‘₯𝑗 of 𝐾 a point π‘₯𝑖𝑗 is selected; then π‘ž is connected with the points π‘₯𝑖𝑗 by straight lines (see Figure 1). Thus, around each vertex π‘₯𝑗 ∈ π‘β„Ž0 , we associate a control volume 𝑉𝑗 ∈ Tβˆ—β„Ž , which consists of the union of the subelements 𝐾 ∈ Tβ„Ž , which have π‘₯𝑗 as a vertex. Also, let 𝛾𝑖𝑗 denote the interface of two control volumes 𝑉𝑖 and 𝑉𝑗 : 𝛾𝑖𝑗 = 𝑉𝑖 ∩ 𝑉𝑗 , 𝑗 ∈ ∏(𝑖). We call the partition regular or quasiuniform, if there exists a positive constant 𝐢 > 0 such that πΆβˆ’1 β„Ž2 ≀ meas (𝑉𝑖 ) ≀ πΆβ„Ž2 , for all 𝑉𝑖 ∈ Tβˆ—β„Ž . Here, β„Ž is the maximal diameter of all elements 𝐾 ∈ Tβ„Ž . In the first (and most popular) control volume partition, the point π‘ž is chosen to be the medicenter (the center of gravity or centroid) of the finite element 𝐾 and the points π‘₯𝑖𝑗 are chosen to be the midpoints of the edges of 𝐾. This type of control volume can be introduced for any finite element partition Tβ„Ž and leads to relatively simple calculations. Besides, if the finite element partition Tβ„Ž is locally regular, that is, there is a constant 𝐢 2 2 such that πΆβ„ŽπΎ ≀ meas (𝐾) ≀ β„ŽπΎ , β„ŽπΎ = diam(𝐾), for all elements 𝐾 ∈ Tβ„Ž , then the finite volume partition Tβˆ—β„Ž is also locally regular. In this paper, we will also use the construction of the control volumes in which the point π‘ž is the circumcenter of the element 𝐾. Then obviously, 𝛾𝑖𝑗 are the perpendicular bisectors of the three edges of 𝐾. This construction requires that all finite elements are triangles of acute type, which we will assume whenever such a triangulation is used. We define the linear finite element space π‘†β„Ž : π‘†β„Ž = {𝑣 ∈ 𝐢 (Ξ©) : 𝑣|𝐾 is linear for all 𝐾 ∈ π‘‡β„Ž and 𝑣|πœ•Ξ© = 0} , (5) and its dual volume element space π‘†β„Žβˆ— : π‘†β„Žβˆ— = {𝑣 ∈ 𝐿2 (Ξ©) : 𝑣|𝑉 is constant for all 𝑉 ∈ π‘‡β„Žβˆ— and 𝑣|πœ•Ξ© = 0} .

(6)

Obviously, π‘†β„Ž = span{πœ™π‘– (π‘₯) : π‘₯𝑖 ∈ π‘β„Ž0 } and π‘†β„Žβˆ— = span{πœ’π‘– (π‘₯) : π‘₯𝑖 ∈ π‘β„Ž0 }, where πœ™π‘– are the standard nodal linear basis functions associated with the node π‘₯𝑖 and πœ’π‘– are the characteristic functions of the volume 𝑉𝑖 . Let πΌβ„Ž : 𝐢(Ξ©) β†’ π‘†β„Ž be the piecewise linear interpolation operator and let πΌβ„Žβˆ— : 𝐢(Ξ©) β†’ π‘†β„Žβˆ— be the piecewise constant interpolation operator. That is, πΌβ„Ž 𝑒 = βˆ‘ 𝑒 (π‘₯𝑖 ) πœ™π‘– (π‘₯) , π‘₯𝑖 βˆˆπ‘β„Ž

πΌβ„Žβˆ— 𝑒 = βˆ‘ 𝑒 (π‘₯𝑖 ) πœ’π‘– (π‘₯) . π‘₯𝑖 βˆˆπ‘β„Ž

(7)

Mathematical Problems in Engineering

3 The backward Euler scheme is defined to be the solution of π‘’β„Žπ‘› ∈ π‘†β„Ž such that

𝐾

𝑉𝑖

( π‘₯𝑖𝑗

π‘₯𝑖

π‘’β„Žπ‘› βˆ’ π‘’β„Žπ‘›βˆ’1 βˆ— , πΌβ„Ž π‘£β„Ž ) + 𝐴 (π‘’β„Žπ‘› , πΌβ„Žβˆ— π‘£β„Ž ) Δ𝑑

π‘₯𝑗

+

𝛾𝑖𝑗

π‘ž

(11)

π‘›βˆ’1

βˆ‘ πœ”π‘›,π‘˜ 𝐡 (𝑑𝑛 , π‘‘π‘˜ ; π‘’β„Žπ‘˜ , πΌβ„Žβˆ— π‘£β„Ž ) π‘˜=0

= (𝑓

𝑛

, πΌβ„Žβˆ— π‘£β„Ž ) ,

where πœ”π‘›,𝑗 are the weights, and the quadrature error is given by for any smooth functions 𝑔 and 𝑀 and its error 𝑑𝑛

π‘›βˆ’1

0

π‘˜=0

π‘žπ‘› (𝑔) = ∫ 𝑀 (𝑑𝑛 , 𝑠) 𝑔 (𝑠) 𝑑𝑠 βˆ’ βˆ‘ πœ”π‘›,𝑗 𝑀𝑛,𝑗 𝑔 (𝑑𝑗 ) Figure 1: A control volume.

(12)

satisfies The semidiscrete finite volume element approximation π‘’β„Ž of (2) is a solution to the problem: find π‘’β„Ž (𝑑) ∈ π‘†β„Ž , for 𝑑 > 0 such that 𝑑

0

(8)

π‘£β„Ž ∈ π‘†β„Žβˆ— ,

(13)

Then we present fully discrete symmetric finite volume element scheme as the following: find π‘’β„Žπ‘› ∈ π‘†β„Ž , such that π‘›βˆ’1

(π‘’β„Ž,𝑑 , π‘£β„Ž ) + 𝐴 (π‘’β„Ž , π‘£β„Ž ) + ∫ 𝐡 (𝑑, 𝑠; π‘’β„Ž (𝑠) , π‘£β„Ž ) 𝑑𝑠 = (𝑓, π‘£β„Ž ) ,

𝑑𝑛 󡄨󡄨 󡄨 󡄨 󡄨 󡄨 󸀠󡄨 σ΅„¨σ΅„¨π‘žπ‘› (𝑔)󡄨󡄨󡄨 ≀ 𝐢Δ𝑑 ∫ (󡄨󡄨󡄨𝑔󡄨󡄨󡄨 + 󡄨󡄨󡄨󡄨𝑔 󡄨󡄨󡄨󡄨) 𝑑𝑑. 0

(πœ•π‘‘ π‘’β„Žπ‘› , πΌβ„Žβˆ— π‘£β„Ž ) + 𝐴 (π‘’β„Žπ‘› , πΌβ„Žβˆ— π‘£β„Ž ) + βˆ‘ πœ”π‘›,π‘˜ 𝐡 (𝑑𝑛 , π‘‘π‘˜ ; π‘’β„Žπ‘˜ , πΌβ„Žβˆ— π‘£β„Ž ) π‘˜=0

= (𝑓𝑛 , πΌβ„Žβˆ— π‘£β„Ž ) + 𝐴 (π‘’β„Žπ‘›βˆ’1 , πΌβ„Žβˆ— π‘£β„Ž ) βˆ’ 𝐴 (π‘’β„Žπ‘›βˆ’1 , πΌβ„Žβˆ— π‘£β„Ž ) ,

π‘’β„Ž (0) = 𝑒0,β„Ž ∈ π‘†β„Ž .

(14)

Here, the bilinear forms 𝐴(𝑒, 𝑣) and 𝐡(𝑑, 𝑠; 𝑒, 𝑣) are defined by

where 𝐴(𝑒, 𝑣) is defined by 𝐴 (𝑒, 𝑣) = βˆ’ βˆ‘ 𝑣𝑖 ∫ 𝐴 (π‘₯) βˆ‡π‘’ β‹… n 𝑑π‘₯, π‘₯𝑖 βˆˆπ‘β„Ž

𝐴 (𝑒, 𝑣) = βˆ’ βˆ‘ 𝑣𝑖 ∫ 𝐴 (π‘₯) βˆ‡π‘’ β‹… n 𝑑π‘₯, π‘₯𝑖 βˆˆπ‘β„Ž

(15) (𝑒, 𝑣) ∈ π‘†β„Ž Γ—

πœ•π‘‰π‘–

(𝑒, 𝑣) ∈ π‘†β„Ž Γ— π‘†β„Žβˆ— ,

(9)

𝐡 (𝑑, 𝑠; 𝑒, 𝑣) = βˆ’ βˆ‘ 𝑣𝑖 ∫ 𝐡 (π‘₯, 𝑑, 𝑠) βˆ‡π‘’ β‹… n 𝑑π‘₯, π‘₯𝑖 βˆˆπ‘β„Ž

πœ•π‘‰π‘–

𝐴|𝐾 = 𝐴𝐾 ,

𝐴𝐾 =

1 ∫ 𝐴 (π‘₯) 𝑑π‘₯. meas (𝐾) 𝐾

3. Some Auxiliary Results

where n denotes the outer-normal direction to the domain under consideration. It is more convenient to rewrite (8) in the following form, which we use in the exposition:

Lemma 1 (see [17]). If the matrix 𝐴 = (π‘Žπ‘–π‘— )2Γ—2 is constant over each element 𝐾 ∈ Tβ„Ž , then βˆ’ βˆ‘ 𝑣𝑖 ∫ π΄βˆ‡π‘’ β‹… n 𝑑𝑠 = ∫ π΄βˆ‡π‘’ β‹… βˆ‡π‘£π‘‘π‘₯, π‘₯𝑖 βˆˆπ‘β„Ž

πœ•π‘‰π‘–

Ξ©

βˆ€π‘’, 𝑣 ∈ π‘†β„Ž . (17)

𝑑

(π‘’β„Ž,𝑑 , πΌβ„Žβˆ— π‘£β„Ž ) + 𝐴 (π‘’β„Ž , πΌβ„Žβˆ— π‘£β„Ž ) + ∫ 𝐡 (𝑑, 𝑠; π‘’β„Ž (𝑠) , πΌβ„Žβˆ— π‘£β„Ž ) 𝑑𝑠

Proposition 2. Consider the following:

0

=

(16)

We note that 𝐴(π‘’β„Žπ‘›βˆ’1 , πΌβ„Žβˆ— π‘£β„Ž )βˆ’π΄(π‘’β„Žπ‘›βˆ’1 , πΌβ„Žβˆ— π‘£β„Ž ) is a modified term.

πœ•π‘‰π‘–

(𝑒, 𝑣) ∈ π‘†β„Ž Γ— π‘†β„Žβˆ— ,

(𝑓, πΌβ„Žβˆ— π‘£β„Ž ) ,

π‘†β„Žβˆ— ,

π‘£β„Ž ∈ π‘†β„Ž . (10)

βˆ’ βˆ‘ 𝑣𝑖 ∫ π΄βˆ‡π‘’β„Žπ‘› β‹… n 𝑑𝑠 = ∫ π΄βˆ‡π‘’β„Žπ‘› β‹… βˆ‡π‘£ 𝑑π‘₯, π‘₯𝑖 βˆˆπ‘β„Ž

πœ•π‘‰π‘–

Ξ©

βˆ€π‘’β„Ž , 𝑣 ∈ π‘†β„Ž . (18)

Next, we define the fully discrete time stepping schemes. Let Δ𝑑 > 0 be a time-step size and 𝑑𝑛 = 𝑛Δ𝑑, 𝑒𝑛 = 𝑒(𝑑𝑛 ), and πœ•π‘‘ 𝑒𝑛 = (𝑒𝑛 βˆ’ π‘’π‘›βˆ’1 )/Δ𝑑. π‘’β„Ž (0) ∈ π‘†β„Ž is an approximation of 𝑒0 , such that β€–π‘’β„Ž (0) βˆ’ 𝑒0 β€– ≀ πΆβ„Ž2 ‖𝑒0 β€–2 .

Proof. By the definition of (16), 𝐴 is piecewise constant on Tβ„Ž . Apply Lemma 1, and note that βˆ‡π‘’β„Ž , βˆ‡π‘£ are constants on 𝐾, we can get (18).

4

Mathematical Problems in Engineering

It can be deduced from Proposition 2 that the coefficient matrix of (14) is symmetric. Remark 3. For each 𝐾 ∈ Tβ„Ž , if we select a point π‘₯𝐾 ∈ 𝐾 and replace (16) by 𝐴𝐾 = 𝐴(π‘₯𝐾 ), for all 𝐾 ∈ Tβ„Ž , 𝐴|𝐾 = 𝐴𝐾 from the analysis given in the following we can get the same error estimates as in Theorem 12. We define a space π‘‰β„Ž = {𝑣 ∈ 𝐿∞ : 𝑣|𝐾 = constant, for all 𝐾 ∈ Tβ„Ž }, then introduce π‘ƒβ„Ž0 : 𝐢(Ξ©) β†’ π‘‰β„Ž by π‘ƒβ„Ž0 𝑣 = 𝑣(π‘žπΎ ) or π‘ƒβ„Ž0 𝑣 = (1/|𝐾| ) ∫𝐾 𝑣 𝑑π‘₯, for all 𝐾 ∈ Tβ„Ž . Lemma 4 (see [21]). Define 𝐴 β„Ž = (π‘ƒβ„Ž0 π‘Žπ‘–π‘— )2Γ—2 , π‘Žβ„Ž (π‘’β„Ž , 𝑣) = ∫Ω 𝐴 β„Ž βˆ‡π‘’β„Ž β‹… βˆ‡π‘£ 𝑑π‘₯. Then there exist two positive constants 𝐢1 and 𝛽, such that 󡄨 󡄨󡄨 σ΅„¨σ΅„¨π‘Žβ„Ž (𝑀, 𝑣)󡄨󡄨󡄨 ≀ 𝐢1 ‖𝑀‖1 ‖𝑣‖1 , π‘Žβ„Ž (𝑣, 𝑣) β‰₯ 𝛽‖𝑣‖21 ,

βˆ€π‘€, 𝑣 ∈ π‘†β„Ž , βˆ€π‘£ ∈ π‘†β„Ž .

(19)

Next we define some discrete norms on π‘†β„Ž : σ΅„©σ΅„© σ΅„©σ΅„©2 βˆ— βˆ— σ΅„©σ΅„©π‘’β„Ž σ΅„©σ΅„©0,β„Ž = (π‘’β„Ž , π‘’β„Ž )0,β„Ž = (πΌβ„Ž π‘’β„Ž , πΌβ„Ž π‘’β„Ž ) , 󡄨󡄨 󡄨󡄨2 σ΅„¨σ΅„¨π‘’β„Ž 󡄨󡄨1,β„Ž = βˆ‘

βˆ‘ meas (𝑉𝑖 ) (

π‘₯𝑖 βˆˆπ‘β„Ž π‘₯𝑗 ∈Π(𝑖)

σ΅„©σ΅„© σ΅„©σ΅„©2 σ΅„© σ΅„©2 󡄨 󡄨2 σ΅„©σ΅„©π‘’β„Ž σ΅„©σ΅„©1,β„Ž = σ΅„©σ΅„©σ΅„©π‘’β„Ž σ΅„©σ΅„©σ΅„©0,β„Ž + σ΅„¨σ΅„¨σ΅„¨π‘’β„Ž 󡄨󡄨󡄨1,β„Ž ,

𝑒𝑖 βˆ’ 𝑒𝑗 𝑑𝑖𝑗

2

),

(20)

where 𝑑𝑖𝑗 = 𝑑(π‘₯𝑖 , π‘₯𝑗 ), the distance between π‘₯𝑖 and π‘₯𝑗 . Obviously, these norms are well defined for π‘’β„Ž ∈ π‘†β„Žβˆ— as well and β€–π‘’β„Ž β€–0,β„Ž = |||π‘’β„Ž |||. Lemma 5 (see [20]). There exist two positive constants 𝐢2 , 𝐢3 , independent of β„Ž, such that

(21)

Lemma 6 (see [20]). Assume that the jumps (if any) of coefficient matrices 𝐴(π‘₯) and 𝐡(π‘₯, 𝑑, 𝑠) are aligned with the finite element partition Tβ„Ž , and over each element 𝐾 ∈ Tβ„Ž their entries are π‘Š1,∞ (𝐾)-functions. Then, (a) there are positive constants β„Ž0 and 𝑐0 , 𝑐1 , independent of β„Ž and 𝑒, such that for all 0 < β„Ž ≀ β„Ž0 , 󡄨 󡄨 󡄨 󡄨 󡄨 󡄨󡄨 βˆ— 󡄨󡄨𝐴 (π‘’β„Ž , πΌβ„Ž π‘£β„Ž )󡄨󡄨󡄨 ≀ 𝑐1 σ΅„¨σ΅„¨σ΅„¨π‘’β„Ž 󡄨󡄨󡄨1,β„Ž σ΅„¨σ΅„¨σ΅„¨π‘£β„Ž 󡄨󡄨󡄨1,β„Ž , βˆ€π‘’β„Ž , π‘£β„Ž ∈ π‘†β„Ž , σ΅„© σ΅„©2 𝐴 (π‘£β„Ž , πΌβ„Žβˆ— π‘£β„Ž ) β‰₯ 𝑐0 σ΅„©σ΅„©σ΅„©π‘£β„Ž σ΅„©σ΅„©σ΅„©1,β„Ž , βˆ€π‘£β„Ž ∈ π‘†β„Ž ;

βˆ€π‘’β„Ž , π‘£β„Ž ∈ π‘†β„Ž .

𝑙𝑖𝑗 (𝑒) = βˆ’ ∫ π΄βˆ‡ (πΌβ„Ž 𝑒 βˆ’ 𝑒) β‹… n 𝑑π‘₯, 𝛾𝑖𝑗

𝛾𝑖𝑗 = 𝑉𝑖 ∩ 𝑉𝑗 .

(24)

The following estimate is a simple consequence of the Bramble-Hilbert lemma. Lemma 7 (see [20]). If 𝑒 ∈ 𝐻2 (Ξ©), then there is a positive constant 𝐢 > 0, independent of β„Ž, such that for 𝑒𝑖𝑗 = βˆͺ{𝐾 | 𝐾 ∩ 𝛾𝑖𝑗 =ΜΈ 0, 𝐾 ∈ Tβ„Ž }, 󡄨 󡄨󡄨 󡄨󡄨𝑙𝑖𝑗 (𝑒)󡄨󡄨󡄨 ≀ πΆβ„Žβ€–π΄β€–0,∞ |𝑒|2,𝑒𝑖𝑗 . 󡄨 󡄨

(25)

Lemma 8 (see [20]). (a) If 𝑒 ∈ 𝐻2 (Ξ©), then there exists a positive constant 𝐢 > 0, independent of β„Ž and 𝑒, such that 󡄨 󡄨 󡄨 󡄨󡄨 βˆ— 󡄨󡄨𝐴 (𝑒 βˆ’ πΌβ„Ž 𝑒, πΌβ„Ž π‘£β„Ž )󡄨󡄨󡄨 ≀ πΆβ„Žβ€–π‘’β€–2 σ΅„¨σ΅„¨σ΅„¨π‘£β„Ž 󡄨󡄨󡄨1,β„Ž , π‘£β„Ž ∈ π‘†β„Ž . (26) (b) If 𝑒(β‹…) ∈ 𝐿∞ (𝐻2 ), then, for 𝑇 > 0 fixed there is a constant 𝐢 = 𝐢(𝑇) > 0, independent of β„Ž and 𝑒, such that for 0 < 𝑑 ≀ 𝑇 󡄨 󡄨 󡄨 󡄨󡄨 βˆ— 󡄨󡄨𝐡 (𝑑, 𝑠; 𝑒 βˆ’ πΌβ„Ž 𝑒, πΌβ„Ž π‘£β„Ž )󡄨󡄨󡄨 ≀ πΆβ„Žβ€–π‘’β€–2 σ΅„¨σ΅„¨σ΅„¨π‘£β„Ž 󡄨󡄨󡄨1,β„Ž , π‘£β„Ž ∈ π‘†β„Ž . (27)

𝐴 (𝑒 βˆ’ π‘…β„Ž 𝑒, πΌβ„Žβˆ— π‘£β„Ž ) = 0,

βˆ€π‘£β„Ž ∈ π‘†β„Ž .

(28)

Tβˆ—β„Ž

Remark 9. If the partition is regular (quasiuniform) and 2 𝑒 is 𝐻 -regular, then σ΅„©σ΅„© σ΅„© (29) 󡄩󡄩𝑒 βˆ’ π‘…β„Ž 𝑒󡄩󡄩󡄩1 ≀ πΆβ„Žβ€–π‘’β€–2 . However, these estimates for the Ritz projection lead to suboptimal error estimates for the finite volume element solution of the integrodifferential equation. In order to obtain optimal order estimates, we need a projection that also takes into account the integral term. This type of projection was called by Cannon and Lin [7] the Ritz-Volterra projection and has been used in the analysis of the finite element method for integrodifferential equations. We define the Ritz-Volterra projection π‘‰β„Ž 𝑒 of a function 𝑒(π‘₯, 𝑑) defined on the cylinder Ξ© Γ— [0, 𝑇]. The Ritz-Volterra projection π‘‰β„Ž : 𝐿∞ (𝐻01 ∩ 𝐻2 ) β†’ 𝐿∞ (π‘†β„Ž ) is defined for 𝑑 β‰₯ 0 by 𝐴 (𝑒 βˆ’ π‘‰β„Ž 𝑒, πΌβ„Žβˆ— π‘£β„Ž ) 𝑑

+ ∫ 𝐡 (𝑑, 𝑠; 𝑒 (𝑠) βˆ’ π‘‰β„Ž 𝑒 (𝑠) , πΌβ„Žβˆ— π‘£β„Ž ) 𝑑𝑠 = 0, 0

βˆ€π‘£β„Ž ∈ π‘†β„Ž . (30)

(22)

(b) for 𝑇 > 0 is fixed there is a constant 𝐢 = 𝐢(𝑇) > 0 independent of β„Ž and 𝑒, such that for 0 < 𝑑 ≀ 𝑇, 󡄨 󡄨 󡄨 󡄨 󡄨󡄨 󡄨 βˆ— 󡄨󡄨𝐡 (𝑑, 𝑠; π‘’β„Ž , πΌβ„Ž π‘£β„Ž )󡄨󡄨󡄨 ≀ πΆσ΅„¨σ΅„¨σ΅„¨π‘’β„Ž 󡄨󡄨󡄨1,β„Ž σ΅„¨σ΅„¨σ΅„¨π‘£β„Ž 󡄨󡄨󡄨1,β„Ž ,

Now we introduce linear functions 𝑙𝑖𝑗 (𝑒), which are used in the error analysis of the finite volume element method:

For any fixed 𝑑 > 0, one can define the Ritz projection function 𝑒(π‘₯, 𝑑) and the operator π‘…β„Ž : 𝐻01 ∩ 𝐻2 β†’ π‘†β„Ž , such that

󡄨󡄨󡄨󡄨󡄨󡄨 󡄨󡄨󡄨󡄨󡄨󡄨2 βˆ— σ΅„¨σ΅„¨σ΅„¨σ΅„¨σ΅„¨σ΅„¨π‘’β„Ž 󡄨󡄨󡄨󡄨󡄨󡄨 = (π‘’β„Ž , πΌβ„Ž π‘’β„Ž ) ,

σ΅„© σ΅„© 𝐢2 ‖𝑣‖0,β„Ž ≀ σ΅„©σ΅„©σ΅„©π‘£β„Ž σ΅„©σ΅„©σ΅„© ≀ 𝐢3 ‖𝑣‖0,β„Ž , βˆ€π‘£β„Ž ∈ π‘†β„Ž , 󡄨󡄨󡄨 󡄨󡄨󡄨 σ΅„© σ΅„© 󡄨󡄨󡄨 󡄨󡄨󡄨 𝐢2 σ΅„¨σ΅„¨σ΅„¨σ΅„¨σ΅„¨σ΅„¨σ΅„¨σ΅„¨σ΅„¨π‘£β„Ž 󡄨󡄨󡄨󡄨󡄨󡄨󡄨󡄨󡄨 ≀ σ΅„©σ΅„©σ΅„©π‘£β„Ž σ΅„©σ΅„©σ΅„© ≀ 𝐢3 σ΅„¨σ΅„¨σ΅„¨σ΅„¨σ΅„¨σ΅„¨σ΅„¨σ΅„¨σ΅„¨π‘£β„Ž 󡄨󡄨󡄨󡄨󡄨󡄨󡄨󡄨󡄨 , βˆ€π‘£β„Ž ∈ π‘†β„Ž , σ΅„© σ΅„© σ΅„© σ΅„© 𝐢2 σ΅„©σ΅„©σ΅„©π‘£β„Ž σ΅„©σ΅„©σ΅„©1,β„Ž ≀ σ΅„©σ΅„©σ΅„©π‘£β„Ž σ΅„©σ΅„©σ΅„©1 ≀ 𝐢3 ‖𝑣‖1,β„Ž , βˆ€π‘£β„Ž ∈ π‘†β„Ž .

4. 𝐿2 -Norm Error Estimate

(23)

Lemma 10 (see [20]). Assume that 𝑒 ∈ 𝐿∞ (𝐻01 ∩𝐻2 ) for 𝑇 > 0 fixed, there is a constant 𝐢 = 𝐢(𝑇) > 0 independent of β„Ž and 𝑒, such that for all 0 < 𝑑 ≀ 𝑇, 𝑑

σ΅„© σ΅„©σ΅„© σ΅„©σ΅„©(𝑒 βˆ’ π‘‰β„Ž 𝑒) (𝑑)σ΅„©σ΅„©σ΅„©1 ≀ πΆβ„Ž (‖𝑒 (𝑑)β€–2 + ∫ ‖𝑒 (𝑠)β€–2 𝑑𝑠) . 0

(31)

Mathematical Problems in Engineering

5

Now we consider an 𝐿2 -estimate for the Ritz-Volterra projection. This estimate is optimal with respect to the order of convergence, but requires π‘Š3,𝑝 -regularity of the solution. Therefore, it is suboptimal with respect to the regularity of the solution and can be useful for 𝑝 close to 1. Namely, we have the following result.

Seting π‘£β„Ž = πœƒπ‘› in (34), we get (πœ•π‘‘ πœƒπ‘› , πΌβ„Žβˆ— πœƒπ‘› ) + 𝐴 (πœƒπ‘› , πΌβ„Žβˆ— πœƒπ‘› ) = (πœπ‘› , πΌβ„Žβˆ— πœƒπ‘› ) + πΏπ΄βˆ’π΄ (πœƒπ‘›βˆ’1 , πΌβ„Žβˆ— πœƒπ‘› )

Lemma 11 (see [20]). Assume that, for some 𝑝 > 1, 𝑒 ∈ 𝐿∞ (π‘Š3,𝑝 (Ξ©)). Then for 𝑇 > 0 fixed there exists a positive constant 𝐢 = 𝐢(𝑇) > 0 independent of β„Ž and 𝑒, such that, for all 0 < 𝑑 ≀ 𝑇,

(32)

Then we prove the following 𝐿2 -norm error estimate. Theorem 12. Let 𝑒 and π‘’β„Žπ‘› be the solution of (2) and (14), respectively. Then we have a constant 𝐢 > 0 independent of β„Ž, Δ𝑑, and 𝑒, such that 𝑑

𝑛 σ΅„© σ΅„© σ΅„©σ΅„© 𝑛 𝑛󡄩 2 σ΅„© σ΅„© 󡄩󡄩𝑒 βˆ’ π‘’β„Ž σ΅„©σ΅„©σ΅„© ≀ πΆβ„Ž (󡄩󡄩󡄩𝑒0 σ΅„©σ΅„©σ΅„©3,𝑝 + ∫ 󡄩󡄩󡄩𝑒𝑑 σ΅„©σ΅„©σ΅„©3,𝑝 𝑑𝑠)

0

𝑑𝑛

σ΅„© σ΅„© σ΅„© σ΅„© + 𝐢Δ𝑑 ∫ (󡄩󡄩󡄩𝑒𝑑𝑑 σ΅„©σ΅„©σ΅„© + 󡄩󡄩󡄩𝑒𝑑 σ΅„©σ΅„©σ΅„©1 ) 𝑑𝑠. 0

π‘›βˆ’1

βˆ’ βˆ‘ 𝑀𝑛,π‘˜ 𝐡 (𝑑𝑛 , π‘‘π‘˜ ; πœƒπ‘˜ , πΌβ„Žβˆ— πœƒπ‘› ) . π‘˜=0

We estimate the terms on the right-hand side:

𝑑

σ΅„©σ΅„© σ΅„© 2 σ΅„©σ΅„©(𝑒 βˆ’ π‘‰β„Ž 𝑒) (𝑑)σ΅„©σ΅„©σ΅„© ≀ πΆβ„Ž (‖𝑒 (𝑑)β€–3,𝑝 + ∫ ‖𝑒 (𝑠)β€–3,𝑝 𝑑𝑠) . 0

(33)

󡄨󡄨 π΄βˆ’π΄ π‘›βˆ’1 βˆ— 𝑛 󡄨󡄨 󡄨 󡄨󡄨 󡄨 󡄨󡄨𝐿 (πœƒ , πΌβ„Ž πœƒ )󡄨󡄨󡄨 ≀ πΆβ„Žβ€–π΄β€–1,∞ ∫ σ΅„¨σ΅„¨σ΅„¨σ΅„¨βˆ‡πœƒπ‘›βˆ’1 󡄨󡄨󡄨󡄨 σ΅„¨σ΅„¨σ΅„¨βˆ‡πœƒπ‘› 󡄨󡄨󡄨 𝑑π‘₯ 󡄨󡄨 󡄨 Ξ© σ΅„© σ΅„©σ΅„© σ΅„© ≀ πΆβ„Žβ€–π΄β€–1,∞ σ΅„©σ΅„©σ΅„©σ΅„©βˆ‡πœƒπ‘›βˆ’1 σ΅„©σ΅„©σ΅„©σ΅„© σ΅„©σ΅„©σ΅„©βˆ‡πœƒπ‘› σ΅„©σ΅„©σ΅„© σ΅„© σ΅„©2 󡄨 󡄨2 ≀ πΆσ΅„©σ΅„©σ΅„©σ΅„©πœƒπ‘›βˆ’1 σ΅„©σ΅„©σ΅„©σ΅„© + πœ€σ΅„¨σ΅„¨σ΅„¨πœƒπ‘› 󡄨󡄨󡄨1 , 󡄨󡄨 󡄨 σ΅„¨σ΅„¨Ξ”π‘‘πΏπ΄βˆ’π΄ (πœ•π‘‘ π‘‰β„Ž 𝑒𝑛 , πΌβˆ— πœƒπ‘› )󡄨󡄨󡄨 ≀ πΆβ„ŽΞ”π‘‘ σ΅„©σ΅„©σ΅„©βˆ‡πœ•π‘‘ π‘‰β„Ž 𝑒𝑛 σ΅„©σ΅„©σ΅„© σ΅„©σ΅„©σ΅„©βˆ‡πœƒπ‘› σ΅„©σ΅„©σ΅„© β„Ž σ΅„© 󡄨󡄨 σ΅„©σ΅„© σ΅„© 󡄨󡄨 σ΅„©σ΅„© σ΅„© σ΅„© 𝑛󡄩 𝑛 ≀ 𝐢Δ𝑑 σ΅„©σ΅„©βˆ‡πœ•π‘‘ π‘‰β„Ž 𝑒 σ΅„©σ΅„©σ΅„© σ΅„©σ΅„©σ΅„©πœƒ σ΅„©σ΅„©σ΅„© ≀ 𝐢Δ𝑑 ∫

Proof. Let πœƒπ‘› = π‘’β„Žπ‘› βˆ’ π‘‰β„Ž 𝑒𝑛 , πœŒπ‘› = 𝑒𝑛 βˆ’ π‘‰β„Ž 𝑒𝑛 , from (2), (14), and (30), we have π‘›βˆ’1

(πœ•π‘‘ πœƒπ‘› , πΌβ„Žβˆ— π‘£β„Ž ) + 𝐴 (πœƒπ‘› , πΌβ„Žβˆ— π‘£β„Ž ) + βˆ‘ 𝑀𝑛,π‘˜ 𝐡 (𝑑𝑛 , π‘‘π‘˜ ; πœƒπ‘˜ , πΌβ„Žβˆ— π‘£β„Ž )

𝑑

𝑛 󡄨 𝑛 󡄨2 󡄨 󡄨󡄨 𝑛 󡄨 βˆ— 𝑛 󡄨 σ΅„¨σ΅„¨π‘ž (π‘‰β„Ž 𝑒, πΌβ„Ž πœƒ )󡄨󡄨󡄨 ≀ πœ€σ΅„¨σ΅„¨σ΅„¨πœƒ 󡄨󡄨󡄨1 + 𝐢(Δ𝑑 ∫ 󡄨󡄨󡄨𝐷𝑑 π‘‰β„Ž 𝑒 (𝑠)󡄨󡄨󡄨1 𝑑𝑠) 0

0

σ΅„¨σ΅„¨π‘›βˆ’1 󡄨󡄨 π‘›βˆ’1 󡄨󡄨 󡄨 󡄨󡄨 βˆ‘ 𝑀𝑛,π‘˜ 𝐡 (𝑑𝑛 , π‘‘π‘˜ ; πœƒπ‘˜ , πΌβˆ— πœƒπ‘› )󡄨󡄨󡄨 ≀ πœ€σ΅„¨σ΅„¨σ΅„¨πœƒπ‘› 󡄨󡄨󡄨2 + 𝐢 βˆ‘ Ξ”π‘‘σ΅„¨σ΅„¨σ΅„¨σ΅„¨πœƒπ‘˜ 󡄨󡄨󡄨󡄨2 , β„Ž 󡄨 󡄨1 󡄨󡄨 󡄨󡄨 󡄨 󡄨1 σ΅„¨σ΅„¨π‘˜=0 󡄨󡄨 π‘˜=0

βˆ’ Δ𝑑 [𝐴 (πœ•π‘‘ π‘‰β„Ž 𝑒𝑛 , πΌβ„Žβˆ— π‘£β„Ž ) βˆ’ 𝐴 (πœ•π‘‘ π‘‰β„Ž 𝑒𝑛 , πΌβ„Žβˆ— π‘£β„Ž )]

𝑑

𝑛 σ΅„© 𝑛 σ΅„©2 σ΅„©2 σ΅„© 󡄨󡄨 βˆ— 𝑛 󡄨 󡄨󡄨(πœπ‘› , πΌβ„Ž πœƒ )󡄨󡄨󡄨 ≀ πΆσ΅„©σ΅„©σ΅„©πœƒ σ΅„©σ΅„©σ΅„© + 𝐢Δ𝑑 ∫ 󡄩󡄩󡄩𝑒𝑑𝑑 (𝑠)σ΅„©σ΅„©σ΅„© 𝑑𝑠 𝑑

𝑑𝑛

π‘›βˆ’1

+ [ ∫ 𝐡 (𝑑𝑛 , 𝑠; π‘‰β„Ž 𝑒𝑛 (𝑠) , πΌβ„Žβˆ— π‘£β„Ž ) 𝑑𝑠 0

+ πΆβ„Ž4

π‘›βˆ’1

βˆ’ βˆ‘ 𝑀𝑛,π‘˜ 𝐡 (𝑑𝑛 , π‘‘π‘˜ ; π‘‰β„Ž π‘’π‘˜ , πΌβ„Žβˆ— π‘£β„Ž )] . (34) 𝑛

βˆ’ πœ•π‘‘ 𝑒 + πœ•π‘‘ 𝜌 ,

πΏπ΄βˆ’π΄ (πœƒπ‘›βˆ’1 , πΌβ„Žβˆ— π‘£β„Ž ) = [𝐴 (πœƒπ‘›βˆ’1 , πΌβ„Žβˆ— π‘£β„Ž ) βˆ’ 𝐴 (πœƒπ‘›βˆ’1 , πΌβ„Žβˆ— π‘£β„Ž )] , πΏπ΄βˆ’π΄ (πœ•π‘‘ π‘‰β„Ž 𝑒𝑛 , πΌβ„Žβˆ— π‘£β„Ž ) = [𝐴 (πœ•π‘‘ π‘‰β„Ž 𝑒𝑛 , πΌβ„Žβˆ— π‘£β„Ž ) βˆ’π΄ (πœ•π‘‘ π‘‰β„Ž 𝑒

𝑛

1 𝑑𝑛 σ΅„©σ΅„© σ΅„©2 ∫ 󡄩𝑒 (𝑠)σ΅„©σ΅„© 𝑑𝑠. Δ𝑑 π‘‘π‘›βˆ’1 σ΅„© 𝑑 σ΅„©3,𝑝 (37)

π‘˜=0

Let 𝜏 =

2

2

𝑑

+ [𝐴 (πœƒπ‘›βˆ’1 , πΌβ„Žβˆ— π‘£β„Ž ) βˆ’ 𝐴 (πœƒπ‘›βˆ’1 , πΌβ„Žβˆ— π‘£β„Ž )]

𝑛

σ΅„©σ΅„© σ΅„©σ΅„©2 σ΅„© 𝑛 σ΅„©2 󡄩󡄩𝑒𝑑 σ΅„©σ΅„©1 𝑑𝑠 + πΆσ΅„©σ΅„©σ΅„©πœƒ σ΅„©σ΅„©σ΅„© ,

𝑛 σ΅„© σ΅„© 󡄨 󡄨2 ≀ πœ€σ΅„¨σ΅„¨σ΅„¨πœƒπ‘› 󡄨󡄨󡄨1 + 𝐢(Δ𝑑 ∫ 󡄩󡄩󡄩𝑒𝑑 (𝑠)σ΅„©σ΅„©σ΅„©1 𝑑𝑠) ,

= (𝑒𝑑𝑛 βˆ’ πœ•π‘‘ 𝑒𝑛 , πΌβ„Žβˆ— π‘£β„Ž ) + (πœ•π‘‘ πœŒπ‘› , πΌβ„Žβˆ— π‘£β„Ž )

𝑒𝑑𝑛

𝑑𝑛

π‘‘π‘›βˆ’1

π‘˜=0

𝑛

(36)

βˆ’ Ξ”π‘‘πΏπ΄βˆ’π΄ (πœ•π‘‘ π‘‰β„Ž 𝑒𝑛 , πΌβ„Žβˆ— πœƒπ‘› ) + π‘žπ‘› (π‘‰β„Ž 𝑒, πΌβ„Žβˆ— πœƒπ‘› )

Let πœ€ = 𝐢0 /6, and use numerical quadrature error estimates to get σ΅„©σ΅„© 𝑛 σ΅„©σ΅„©2 σ΅„©σ΅„©σ΅„© π‘›βˆ’1 σ΅„©σ΅„©σ΅„©2 σ΅„©σ΅„©πœƒ σ΅„©σ΅„© βˆ’ σ΅„©σ΅„©πœƒ σ΅„©σ΅„© 󡄨 󡄨2 + 𝐢0 σ΅„¨σ΅„¨σ΅„¨πœƒπ‘› 󡄨󡄨󡄨1 2Δ𝑑 ≀

, πΌβ„Žβˆ— π‘£β„Ž ) ] ,

𝑑𝑛

π‘›βˆ’1 𝑑𝑛 𝐢0 󡄨󡄨 𝑛 󡄨󡄨2 󡄨 π‘˜ 󡄨2 σ΅„© σ΅„© σ΅„¨σ΅„¨πœƒ 󡄨󡄨1 + 𝐢 βˆ‘ Ξ”π‘‘σ΅„¨σ΅„¨σ΅„¨σ΅„¨πœƒ 󡄨󡄨󡄨󡄨1 + 𝐢(Δ𝑑 ∫ 󡄩󡄩󡄩𝑒𝑑 (𝑠)σ΅„©σ΅„©σ΅„©1 𝑑𝑠) 2 0 π‘˜=0 𝑑𝑛 σ΅„©2 σ΅„© σ΅„© σ΅„©2 + πΆσ΅„©σ΅„©σ΅„©σ΅„©πœƒπ‘›βˆ’1 σ΅„©σ΅„©σ΅„©σ΅„© + πΆσ΅„©σ΅„©σ΅„©πœƒπ‘› σ΅„©σ΅„©σ΅„© + 𝐢Δ𝑑 ∫

π‘žπ‘› (π‘‰β„Ž 𝑒, πΌβ„Žβˆ— π‘£β„Ž ) = [ ∫ 𝐡 (𝑑𝑛 , 𝑠; π‘‰β„Ž 𝑒𝑛 (𝑠) , πΌβ„Žβˆ— π‘£β„Ž ) 𝑑𝑠 0

π‘‘π‘›βˆ’1

π‘›βˆ’1

βˆ’ βˆ‘ 𝑀𝑛,π‘˜ 𝐡 (𝑑𝑛 , π‘‘π‘˜ ; π‘‰β„Ž π‘’π‘˜ , πΌβ„Žβˆ— π‘£β„Ž )] . π‘˜=0

(35)

+ 𝐢Δ𝑑 ∫

𝑑𝑛

π‘‘π‘›βˆ’1

2

σ΅„©σ΅„© σ΅„©σ΅„©2 󡄩󡄩𝑒𝑑 σ΅„©σ΅„©1 𝑑𝑑

𝑑𝑛 σ΅„©2 σ΅„©2 σ΅„©σ΅„© σ΅„© 4 1 ∫ 󡄩󡄩󡄩𝑒𝑑 (𝑠)σ΅„©σ΅„©σ΅„©3,𝑝 𝑑𝑠. 󡄩󡄩𝑒𝑑𝑑 (𝑠)σ΅„©σ΅„©σ΅„© 𝑑𝑠 + πΆβ„Ž Δ𝑑 𝑑 π‘›βˆ’1

(38)

6

Mathematical Problems in Engineering the initial function 𝑒(π‘₯, 0) = 0. Denote the numerical solution of 𝑒(π‘₯, 𝑇) by π‘’β„Ž and set π›Ύβ„Ž = ‖𝑒(π‘₯, 𝑇)βˆ’π‘’2β„Ž β€–/‖𝑒(π‘₯, 𝑇)βˆ’π‘’β„Ž β€– with fixed ratio Δ𝑑/β„Ž2 . The numerical results are presented in Tables 1 and 2. It is observed that the results support our theory.

Acknowledgments This work is supported by the Excellent Young and Middleaged Scientists Research Fund of Shandong Province (no. 2008BS09026); National Natural Science Foundation of China (no. 11171193); Natural Science Foundation of Shandong Province (no. ZR2011AM016).

References Figure 2: Triangulation and circumcenter dual mesh. Table 1: Error behavior for Δ𝑑/β„Ž2 = 3.90625𝑒 βˆ’ 4. Δ𝑑 1/10 1/40 1/160 1/640

β„Ž 1/16 1/32 1/64 1/128

‖𝑒(π‘₯, 𝑇) βˆ’ π‘’β„Ž β€– 6.853070480441𝑒 βˆ’ 3 1.690155085494𝑒 βˆ’ 3 4.225622073870𝑒 βˆ’ 4 1.052607231633𝑒 βˆ’ 4

π›Ύβ„Ž 4.0 4.0 4.0

Table 2: Error behavior for Δ𝑑/β„Ž2 = 1.953125𝑒 βˆ’ 4. Δ𝑑 1/20 1/80 1/320 1/1280

β„Ž 1/16 1/32 1/64 1/128

‖𝑒(π‘₯, 𝑇) βˆ’ π‘’β„Ž β€– 4.671190948063𝑒 βˆ’ 3 1.150735715485𝑒 βˆ’ 3 2.880323203978𝑒 βˆ’ 4 7.164754698408𝑒 βˆ’ 5

π›Ύβ„Ž 4.0 4.0 4.0

Thus, multiplying each term on both sides of (38) by Δ𝑑, summing over 𝑛, and employing Gronwall’s lemma, we obtain 𝑑𝑛 σ΅„© 0σ΅„© σ΅„© σ΅„© σ΅„©σ΅„© 𝑛 σ΅„©σ΅„© 2 σ΅„©σ΅„©πœƒ σ΅„©σ΅„© ≀ 𝐢 σ΅„©σ΅„©σ΅„©σ΅„©πœƒ σ΅„©σ΅„©σ΅„©σ΅„© + πΆβ„Ž ∫ 󡄩󡄩󡄩𝑒𝑑 σ΅„©σ΅„©σ΅„©3,𝑝 𝑑𝑠 0

𝑑𝑛

σ΅„© σ΅„© σ΅„© σ΅„© + 𝐢Δ𝑑 ∫ (󡄩󡄩󡄩𝑒𝑑𝑑 σ΅„©σ΅„©σ΅„© + 󡄩󡄩󡄩𝑒𝑑 σ΅„©σ΅„©σ΅„©1 ) 𝑑𝑠.

(39)

0

And β€–πœƒ0 β€– ≀ πΆβ„Ž2 ‖𝑒0 β€–3,𝑝 ; hence (33) follows from the above analysis and Lemma 11.

5. Numerical Experiments In this section, we present a numerical example for solving the problem (2) by using the symmetric modified finite volume element scheme presented in Section 2. Let Ξ© = (0, 1) Γ— (0, 1), 𝑇 = 1, π‘‡β„Ž be Delaunay triangulation generated by EasyMesh [22] over Ξ© with mesh size β„Ž as shown in Figure 2 and time step be Δ𝑑. We consider the case of π‘Ž11 = π‘₯1 + π‘₯2 + 3, π‘Ž12 = π‘₯1 + π‘₯2 + 4, π‘Ž12 = π‘Ž21 = βˆ’(π‘₯1 + π‘₯2 ), 𝑏11 = 1, 𝑏12 = 1/2, 𝑏12 = 𝑏21 = 0, the exact solution 𝑒(π‘₯, 𝑑) = (𝑑2 + sin(πœ‹π‘‘)) sin(πœ‹π‘₯1 ) sin(πœ‹π‘₯2 ), and

[1] J. H. Cushman and T. R. Ginn, β€œNonlocal dispersion in media with continuously evolving scales of heterogeneity,” Transport in Porous Media, vol. 13, no. 1, pp. 123–138, 1993. [2] J. H. Cushman, B. X. Hu, and F. Deng, β€œNonlocal reactive transport with physical and chemical heterogeneity: localization errors,” Water Resources Research, vol. 31, no. 9, pp. 2219–2237, 1995. [3] G. Dagan, β€œThe significance of heterogeneity of evolving scales to transport in porous formations,” Water Resources Research, vol. 30, no. 12, pp. 3327–3336, 1994. [4] V. V. Shelukhin, β€œA non-local in time model for radionuclides propagation in Stokes fluids, dynamics of fluids with free boundaries,” Siberian Branch of the Russian Academy of Sciences, Institute of Hydrodynamics, vol. 107, pp. 180–193, 1993. [5] M. Renardy, W. J. Hrusa, and J. A. Nohel, Mathematical Problems in Viscoelasticity, vol. 35, Longman Scientific and Technical, Essex, UK, 1987. [6] W. Allegretto, Y. Lin, and A. Zhou, β€œA box scheme for coupled systems resulting from microsensor thermistor problems,” Dynamics of Continuous, Discrete and Impulsive Systems, vol. 5, no. 1–4, pp. 209–223, 1999. [7] J. R. Cannon and Y. Lin, β€œNonclassical 𝐻1 -projection and Galerkin methods for nonlinear parabolic integro-differential equations,” Calcolo, vol. 25, no. 3, pp. 187–201, 1988. [8] Y. P. Lin, V. ThomΒ΄ee, and L. B. Wahlbin, β€œRitz-Volterra projections to finite-element spaces and applications to integrodifferential and related equations,” SIAM Journal on Numerical Analysis, vol. 28, no. 4, pp. 1047–1070, 1995. [9] Y. P. Lin, β€œOn maximum norm estimates for Ritz-Volterra projection with applications to some time dependent problems,” Journal of Computational Mathematics, vol. 15, no. 2, pp. 159– 178, 1997. [10] I. H. Sloan and V. ThomΒ΄ee, β€œTime discretization of an integrodifferential equation of parabolic type,” SIAM Journal on Numerical Analysis, vol. 23, no. 5, pp. 1052–1061, 1986. [11] T. Zhang, β€œThe stability and approximation properties of RitzVolterra projection and application. I,” Numerical Mathematics. English Series, vol. 6, no. 1, pp. 57–76, 1997. [12] V. ThomΒ΄ee and L. B. Wahlbin, β€œLong-time numerical solution of a parabolic equation with memory,” Mathematics of Computation, vol. 62, no. 206, pp. 477–496, 1994. [13] R. E. Bank and D. J. Rose, β€œSome error estimates for the box method,” SIAM Journal on Numerical Analysis, vol. 24, no. 4, pp. 777–787, 1987.

Mathematical Problems in Engineering [14] Z. Q. Cai, β€œOn the finite volume element method,” Numerische Mathematik, vol. 58, no. 7, pp. 713–735, 1991. [15] Z. Q. Cai and S. McCormick, β€œOn the accuracy of the finite volume element method for diffusion equations on composite grids,” SIAM Journal on Numerical Analysis, vol. 27, no. 3, pp. 636–655, 1990. [16] W. Hackbusch, β€œOn first and second order box schemes,” Computing, vol. 41, no. 4, pp. 277–296, 1989. [17] J. Huang and S. Xi, β€œOn the finite volume element method for general self-adjoint elliptic problems,” SIAM Journal on Numerical Analysis, vol. 35, no. 5, pp. 1762–1774, 1998. [18] R. Li, Z. Chen, and W. Wu, Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods, vol. 226, Marcel Dekker, New York, NY, USA, 2000. [19] I. D. Mishev, β€œFinite volume methods on Voronoi meshes,” Numerical Methods for Partial Differential Equations, vol. 14, no. 2, pp. 193–212, 1998. [20] R. Ewing, R. Lazarov, and Y. Lin, β€œFinite volume element approximations of nonlocal reactive flows in porous media,” Numerical Methods for Partial Differential Equations, vol. 16, no. 3, pp. 285–311, 2000. [21] S. Liang, X. Ma, and A. Zhou, β€œA symmetric finite volume scheme for selfadjoint elliptic problems,” Journal of Computational and Applied Mathematics, vol. 147, no. 1, pp. 121–136, 2002. [22] EasyMesh web site, http://www-dinma.univ.trieste.it/nirftc/ research/easymesh/.

7

Advances in

Operations Research Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Advances in

Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Applied Mathematics

Algebra

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Probability and Statistics Volume 2014

The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Differential Equations Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Submit your manuscripts at http://www.hindawi.com International Journal of

Advances in

Combinatorics Hindawi Publishing Corporation http://www.hindawi.com

Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Journal of

Mathematics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Discrete Mathematics

Journal of

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Discrete Dynamics in Nature and Society

Journal of

Function Spaces Hindawi Publishing Corporation http://www.hindawi.com

Abstract and Applied Analysis

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Journal of

Stochastic Analysis

Optimization

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014