Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 2013, Article ID 175904, 7 pages http://dx.doi.org/10.1155/2013/175904
Research Article A Fully Discrete Symmetric Finite Volume Element Approximation of Nonlocal Reactive Flows in Porous Media Zhe Yin and Qiang Xu School of Mathematical Sciences, Shandong Normal University, Jinan 250014, China Correspondence should be addressed to Zhe Yin;
[email protected] Received 9 November 2012; Accepted 30 December 2012 Academic Editor: J. Jiang Copyright Β© 2013 Z. Yin and Q. Xu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We study symmetric finite volume element approximations for two-dimensional parabolic integrodifferential equations, arising in modeling of nonlocal reactive flows in porous media. It is proved that symmetric finite volume element approximations are convergent with optimal order in πΏ2 -norm. Numerical example is presented to illustrate the accuracy of our method.
1. Introduction In this paper, we consider symmetric finite volume element discretizations of the following initial value problem for the operator equation for π’ = π’(π‘): π‘
π’π‘ + Aπ’ + β« B (π‘, π ) π’ (π ) ππ = π (π‘) , 0
π’ (0) = π’0 ,
(1)
where A is a strongly elliptic differential operator and B is a second-order elliptic differential operator in space. The operators A and B incorporate Dirichlet and Neumann boundary conditions. The problem (1) is an abstract form of an initial boundary value problem for a parabolic integrodifferential equation. This model is very important in the transport of reactive and passive contaminats in aquifers, an area of active interdisciplinary research of mathematicians, engineers, and life scientists. From a mathematical point of view, the evolution of either a passive or reactive chemical within a velocity field exhibiting strong variation on many scales defies representation using classical Fickian theory. The evolution of a chemical in such a velocity field when modeled by Fickian-type theories leads to a dispersion tensor whose magnitude depends upon the time scales of observation. In order to avoid such difficulty, a new class of nonlocal models of transport have been derived. In this case, the constitutive relations involve either integrals or higher order derivatives, which take multiscales into consideration. We refer to [1, 2] for the derivation
of the mathematical models and for the precise hypotheses and analysis. Mathematical formulations of this kind also arise naturally in various engineering models, such as nonlocal reactive transport in underground water flows in porous media [3], heat conduction, radioactive nuclear decay in fluid flows [4], non-Newtonian fluid flows, or viscoelastic deformations of materials with memory (in particular polymers) [5], semiconductor modeling [6], and biotechnology. One very important characteristic of all these models is that they all express a conservation of a certain quantity (mass, momentum, heat, etc.) in any moment for any subdomain. This in many applications is the most desirable feature of the approximation method when it comes to the numerical solution of the corresponding initial boundary value problem. This type of equations has been extensively treated by finite element, finite difference, and collocation methods in the last years [7β12]. The finite element method conserves the flux approximately; therefore, in the asymptotic limit (i.e., when the grid step-size tends to zero) it produces adequate results. However, this could be a disadvantage when relatively coarse grids are used. Perhaps the most important property of the finite volume method is that it exactly conserves the approximate flux (heat, mass, etc.) over each computational cell. This important property combined with adequate accuracy and ease of implementation has contributed to the recent renewed interest in the method. The theoretical framework and
2
Mathematical Problems in Engineering
the basic tools for the analysis of the finite volume element methods have been developed in the last decade (see, e.g., [13β19]). Reference [20] has given the finite volume element approximations of the problem (1). But in a general case the coefficient matrix of the linear system obtained from the finite volume element method is not symmetric. In this paper, we study symmetric modified finite volume element approximations for two-dimensional parabolic integrodifferential equations, arising in modeling of nonlocal reactive flows in porous media. It is proved that symmetric modified finite volume element approximations are convergent with optimal order in πΏ2 -norm. Throughout this paper we use πΆ (without or with subscript or superscript) to denote a generic constant independent of the discretization parameter.
2. Fully Discrete Symmetric Finite Volume Element Scheme Consider the following initial boundary value problem: find π’ = π’(π₯, π‘) such that π‘
π’π‘ ββ β
(π΄βπ’)ββ« β β
(π΅βπ’ (π )) ππ = π, 0
π’ (π₯, π‘) = 0,
(π₯, π‘) β Ξ© Γ (0, π] ,
(π₯, π‘) β πΞ© Γ (0, π] ,
π’ (π₯, 0) = π’0 (π₯) ,
π₯ β Ξ©, (2)
where Ξ© is a bounded polygonal domain in π
2 with boundary πΞ©. π΄ = {πππ (π₯)} is a 2 Γ 2 real-valued symmetric and uniformly positive definite matrix, π΅ = {πππ (π₯, π‘, π )} is a 2 Γ 2 matrix. π = π(π₯, π‘) and π’0 (π₯) are known functions, which are assumed to be smooth so that problem (2) has a unique solution in a certain Sobolev space. The problem (2) can be written in the form (1) by introducing the operators A : π»01 (Ξ©) β π»β1 (Ξ©) and B : π»01 (Ξ©) β π»β1 (Ξ©): (Aπ’, π£) = β« π΄ (π₯) βπ’ β
βπ£ ππ₯, Ξ©
(3)
(Bπ’, π£) = β« π΅ (π₯, π‘, π ) βπ’ β
βπ£ ππ₯, Ξ©
π»01 (Ξ©)
and for any π‘, π β (0, π). for all π£ β We assume that Ξ© is a convex polygonal domain. The domain Ξ© is split into triangular finite elements πΎ. The elements πΎ are considered to be a closed set, and the triangulation is denoted by Tβ . Then Ξ© = βπΎβTβ πΎ and πβ denotes all nodes or vertices: πβ = {π : π is a vertex of element, πΎ β Tβ and π β Ξ©} . (4) In order to accommodate Dirichlet boundary conditions, we will also need the set of vertices that are internal to Ξ©, denoted by πβ0 , that is, πβ0 = πβ β© Ξ©. For a given vertex π₯π , we define by Ξ (π) the index set of all neighbors of π₯π in πβ .
For a given triangulation Tβ , we construct a dual mesh Tββ based upon Tβ whose elements are called control volumes. In the finite volume methods, there are various ways to introduce the control volumes. Almost all approaches can be described in the following general scheme: in each triangle πΎ β Tβ a point π is selected; similarly, on each of the three edges π₯π π₯π of πΎ a point π₯ππ is selected; then π is connected with the points π₯ππ by straight lines (see Figure 1). Thus, around each vertex π₯π β πβ0 , we associate a control volume ππ β Tββ , which consists of the union of the subelements πΎ β Tβ , which have π₯π as a vertex. Also, let πΎππ denote the interface of two control volumes ππ and ππ : πΎππ = ππ β© ππ , π β β(π). We call the partition regular or quasiuniform, if there exists a positive constant πΆ > 0 such that πΆβ1 β2 β€ meas (ππ ) β€ πΆβ2 , for all ππ β Tββ . Here, β is the maximal diameter of all elements πΎ β Tβ . In the first (and most popular) control volume partition, the point π is chosen to be the medicenter (the center of gravity or centroid) of the finite element πΎ and the points π₯ππ are chosen to be the midpoints of the edges of πΎ. This type of control volume can be introduced for any finite element partition Tβ and leads to relatively simple calculations. Besides, if the finite element partition Tβ is locally regular, that is, there is a constant πΆ 2 2 such that πΆβπΎ β€ meas (πΎ) β€ βπΎ , βπΎ = diam(πΎ), for all elements πΎ β Tβ , then the finite volume partition Tββ is also locally regular. In this paper, we will also use the construction of the control volumes in which the point π is the circumcenter of the element πΎ. Then obviously, πΎππ are the perpendicular bisectors of the three edges of πΎ. This construction requires that all finite elements are triangles of acute type, which we will assume whenever such a triangulation is used. We define the linear finite element space πβ : πβ = {π£ β πΆ (Ξ©) : π£|πΎ is linear for all πΎ β πβ and π£|πΞ© = 0} , (5) and its dual volume element space πββ : πββ = {π£ β πΏ2 (Ξ©) : π£|π is constant for all π β πββ and π£|πΞ© = 0} .
(6)
Obviously, πβ = span{ππ (π₯) : π₯π β πβ0 } and πββ = span{ππ (π₯) : π₯π β πβ0 }, where ππ are the standard nodal linear basis functions associated with the node π₯π and ππ are the characteristic functions of the volume ππ . Let πΌβ : πΆ(Ξ©) β πβ be the piecewise linear interpolation operator and let πΌββ : πΆ(Ξ©) β πββ be the piecewise constant interpolation operator. That is, πΌβ π’ = β π’ (π₯π ) ππ (π₯) , π₯π βπβ
πΌββ π’ = β π’ (π₯π ) ππ (π₯) . π₯π βπβ
(7)
Mathematical Problems in Engineering
3 The backward Euler scheme is defined to be the solution of π’βπ β πβ such that
πΎ
ππ
( π₯ππ
π₯π
π’βπ β π’βπβ1 β , πΌβ π£β ) + π΄ (π’βπ , πΌββ π£β ) Ξπ‘
π₯π
+
πΎππ
π
(11)
πβ1
β ππ,π π΅ (π‘π , π‘π ; π’βπ , πΌββ π£β ) π=0
= (π
π
, πΌββ π£β ) ,
where ππ,π are the weights, and the quadrature error is given by for any smooth functions π and π and its error π‘π
πβ1
0
π=0
ππ (π) = β« π (π‘π , π ) π (π ) ππ β β ππ,π ππ,π π (π‘π ) Figure 1: A control volume.
(12)
satisfies The semidiscrete finite volume element approximation π’β of (2) is a solution to the problem: find π’β (π‘) β πβ , for π‘ > 0 such that π‘
0
(8)
π£β β πββ ,
(13)
Then we present fully discrete symmetric finite volume element scheme as the following: find π’βπ β πβ , such that πβ1
(π’β,π‘ , π£β ) + π΄ (π’β , π£β ) + β« π΅ (π‘, π ; π’β (π ) , π£β ) ππ = (π, π£β ) ,
π‘π σ΅¨σ΅¨ σ΅¨ σ΅¨ σ΅¨ σ΅¨ σΈ σ΅¨ σ΅¨σ΅¨ππ (π)σ΅¨σ΅¨σ΅¨ β€ πΆΞπ‘ β« (σ΅¨σ΅¨σ΅¨πσ΅¨σ΅¨σ΅¨ + σ΅¨σ΅¨σ΅¨σ΅¨π σ΅¨σ΅¨σ΅¨σ΅¨) ππ‘. 0
(ππ‘ π’βπ , πΌββ π£β ) + π΄ (π’βπ , πΌββ π£β ) + β ππ,π π΅ (π‘π , π‘π ; π’βπ , πΌββ π£β ) π=0
= (ππ , πΌββ π£β ) + π΄ (π’βπβ1 , πΌββ π£β ) β π΄ (π’βπβ1 , πΌββ π£β ) ,
π’β (0) = π’0,β β πβ .
(14)
Here, the bilinear forms π΄(π’, π£) and π΅(π‘, π ; π’, π£) are defined by
where π΄(π’, π£) is defined by π΄ (π’, π£) = β β π£π β« π΄ (π₯) βπ’ β
n ππ₯, π₯π βπβ
π΄ (π’, π£) = β β π£π β« π΄ (π₯) βπ’ β
n ππ₯, π₯π βπβ
(15) (π’, π£) β πβ Γ
πππ
(π’, π£) β πβ Γ πββ ,
(9)
π΅ (π‘, π ; π’, π£) = β β π£π β« π΅ (π₯, π‘, π ) βπ’ β
n ππ₯, π₯π βπβ
πππ
π΄|πΎ = π΄πΎ ,
π΄πΎ =
1 β« π΄ (π₯) ππ₯. meas (πΎ) πΎ
3. Some Auxiliary Results
where n denotes the outer-normal direction to the domain under consideration. It is more convenient to rewrite (8) in the following form, which we use in the exposition:
Lemma 1 (see [17]). If the matrix π΄ = (πππ )2Γ2 is constant over each element πΎ β Tβ , then β β π£π β« π΄βπ’ β
n ππ = β« π΄βπ’ β
βπ£ππ₯, π₯π βπβ
πππ
Ξ©
βπ’, π£ β πβ . (17)
π‘
(π’β,π‘ , πΌββ π£β ) + π΄ (π’β , πΌββ π£β ) + β« π΅ (π‘, π ; π’β (π ) , πΌββ π£β ) ππ
Proposition 2. Consider the following:
0
=
(16)
We note that π΄(π’βπβ1 , πΌββ π£β )βπ΄(π’βπβ1 , πΌββ π£β ) is a modified term.
πππ
(π’, π£) β πβ Γ πββ ,
(π, πΌββ π£β ) ,
πββ ,
π£β β πβ . (10)
β β π£π β« π΄βπ’βπ β
n ππ = β« π΄βπ’βπ β
βπ£ ππ₯, π₯π βπβ
πππ
Ξ©
βπ’β , π£ β πβ . (18)
Next, we define the fully discrete time stepping schemes. Let Ξπ‘ > 0 be a time-step size and π‘π = πΞπ‘, π’π = π’(π‘π ), and ππ‘ π’π = (π’π β π’πβ1 )/Ξπ‘. π’β (0) β πβ is an approximation of π’0 , such that βπ’β (0) β π’0 β β€ πΆβ2 βπ’0 β2 .
Proof. By the definition of (16), π΄ is piecewise constant on Tβ . Apply Lemma 1, and note that βπ’β , βπ£ are constants on πΎ, we can get (18).
4
Mathematical Problems in Engineering
It can be deduced from Proposition 2 that the coefficient matrix of (14) is symmetric. Remark 3. For each πΎ β Tβ , if we select a point π₯πΎ β πΎ and replace (16) by π΄πΎ = π΄(π₯πΎ ), for all πΎ β Tβ , π΄|πΎ = π΄πΎ from the analysis given in the following we can get the same error estimates as in Theorem 12. We define a space πβ = {π£ β πΏβ : π£|πΎ = constant, for all πΎ β Tβ }, then introduce πβ0 : πΆ(Ξ©) β πβ by πβ0 π£ = π£(ππΎ ) or πβ0 π£ = (1/|πΎ| ) β«πΎ π£ ππ₯, for all πΎ β Tβ . Lemma 4 (see [21]). Define π΄ β = (πβ0 πππ )2Γ2 , πβ (π’β , π£) = β«Ξ© π΄ β βπ’β β
βπ£ ππ₯. Then there exist two positive constants πΆ1 and π½, such that σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨πβ (π€, π£)σ΅¨σ΅¨σ΅¨ β€ πΆ1 βπ€β1 βπ£β1 , πβ (π£, π£) β₯ π½βπ£β21 ,
βπ€, π£ β πβ , βπ£ β πβ .
(19)
Next we define some discrete norms on πβ : σ΅©σ΅© σ΅©σ΅©2 β β σ΅©σ΅©π’β σ΅©σ΅©0,β = (π’β , π’β )0,β = (πΌβ π’β , πΌβ π’β ) , σ΅¨σ΅¨ σ΅¨σ΅¨2 σ΅¨σ΅¨π’β σ΅¨σ΅¨1,β = β
β meas (ππ ) (
π₯π βπβ π₯π βΞ (π)
σ΅©σ΅© σ΅©σ΅©2 σ΅© σ΅©2 σ΅¨ σ΅¨2 σ΅©σ΅©π’β σ΅©σ΅©1,β = σ΅©σ΅©σ΅©π’β σ΅©σ΅©σ΅©0,β + σ΅¨σ΅¨σ΅¨π’β σ΅¨σ΅¨σ΅¨1,β ,
π’π β π’π πππ
2
),
(20)
where πππ = π(π₯π , π₯π ), the distance between π₯π and π₯π . Obviously, these norms are well defined for π’β β πββ as well and βπ’β β0,β = |||π’β |||. Lemma 5 (see [20]). There exist two positive constants πΆ2 , πΆ3 , independent of β, such that
(21)
Lemma 6 (see [20]). Assume that the jumps (if any) of coefficient matrices π΄(π₯) and π΅(π₯, π‘, π ) are aligned with the finite element partition Tβ , and over each element πΎ β Tβ their entries are π1,β (πΎ)-functions. Then, (a) there are positive constants β0 and π0 , π1 , independent of β and π’, such that for all 0 < β β€ β0 , σ΅¨ σ΅¨ σ΅¨ σ΅¨ σ΅¨ σ΅¨σ΅¨ β σ΅¨σ΅¨π΄ (π’β , πΌβ π£β )σ΅¨σ΅¨σ΅¨ β€ π1 σ΅¨σ΅¨σ΅¨π’β σ΅¨σ΅¨σ΅¨1,β σ΅¨σ΅¨σ΅¨π£β σ΅¨σ΅¨σ΅¨1,β , βπ’β , π£β β πβ , σ΅© σ΅©2 π΄ (π£β , πΌββ π£β ) β₯ π0 σ΅©σ΅©σ΅©π£β σ΅©σ΅©σ΅©1,β , βπ£β β πβ ;
βπ’β , π£β β πβ .
πππ (π’) = β β« π΄β (πΌβ π’ β π’) β
n ππ₯, πΎππ
πΎππ = ππ β© ππ .
(24)
The following estimate is a simple consequence of the Bramble-Hilbert lemma. Lemma 7 (see [20]). If π’ β π»2 (Ξ©), then there is a positive constant πΆ > 0, independent of β, such that for πππ = βͺ{πΎ | πΎ β© πΎππ =ΜΈ 0, πΎ β Tβ }, σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨πππ (π’)σ΅¨σ΅¨σ΅¨ β€ πΆββπ΄β0,β |π’|2,πππ . σ΅¨ σ΅¨
(25)
Lemma 8 (see [20]). (a) If π’ β π»2 (Ξ©), then there exists a positive constant πΆ > 0, independent of β and π’, such that σ΅¨ σ΅¨ σ΅¨ σ΅¨σ΅¨ β σ΅¨σ΅¨π΄ (π’ β πΌβ π’, πΌβ π£β )σ΅¨σ΅¨σ΅¨ β€ πΆββπ’β2 σ΅¨σ΅¨σ΅¨π£β σ΅¨σ΅¨σ΅¨1,β , π£β β πβ . (26) (b) If π’(β
) β πΏβ (π»2 ), then, for π > 0 fixed there is a constant πΆ = πΆ(π) > 0, independent of β and π’, such that for 0 < π‘ β€ π σ΅¨ σ΅¨ σ΅¨ σ΅¨σ΅¨ β σ΅¨σ΅¨π΅ (π‘, π ; π’ β πΌβ π’, πΌβ π£β )σ΅¨σ΅¨σ΅¨ β€ πΆββπ’β2 σ΅¨σ΅¨σ΅¨π£β σ΅¨σ΅¨σ΅¨1,β , π£β β πβ . (27)
π΄ (π’ β π
β π’, πΌββ π£β ) = 0,
βπ£β β πβ .
(28)
Tββ
Remark 9. If the partition is regular (quasiuniform) and 2 π’ is π» -regular, then σ΅©σ΅© σ΅© (29) σ΅©σ΅©π’ β π
β π’σ΅©σ΅©σ΅©1 β€ πΆββπ’β2 . However, these estimates for the Ritz projection lead to suboptimal error estimates for the finite volume element solution of the integrodifferential equation. In order to obtain optimal order estimates, we need a projection that also takes into account the integral term. This type of projection was called by Cannon and Lin [7] the Ritz-Volterra projection and has been used in the analysis of the finite element method for integrodifferential equations. We define the Ritz-Volterra projection πβ π’ of a function π’(π₯, π‘) defined on the cylinder Ξ© Γ [0, π]. The Ritz-Volterra projection πβ : πΏβ (π»01 β© π»2 ) β πΏβ (πβ ) is defined for π‘ β₯ 0 by π΄ (π’ β πβ π’, πΌββ π£β ) π‘
+ β« π΅ (π‘, π ; π’ (π ) β πβ π’ (π ) , πΌββ π£β ) ππ = 0, 0
βπ£β β πβ . (30)
(22)
(b) for π > 0 is fixed there is a constant πΆ = πΆ(π) > 0 independent of β and π’, such that for 0 < π‘ β€ π, σ΅¨ σ΅¨ σ΅¨ σ΅¨ σ΅¨σ΅¨ σ΅¨ β σ΅¨σ΅¨π΅ (π‘, π ; π’β , πΌβ π£β )σ΅¨σ΅¨σ΅¨ β€ πΆσ΅¨σ΅¨σ΅¨π’β σ΅¨σ΅¨σ΅¨1,β σ΅¨σ΅¨σ΅¨π£β σ΅¨σ΅¨σ΅¨1,β ,
Now we introduce linear functions πππ (π’), which are used in the error analysis of the finite volume element method:
For any fixed π‘ > 0, one can define the Ritz projection function π’(π₯, π‘) and the operator π
β : π»01 β© π»2 β πβ , such that
σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨2 β σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨π’β σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨ = (π’β , πΌβ π’β ) ,
σ΅© σ΅© πΆ2 βπ£β0,β β€ σ΅©σ΅©σ΅©π£β σ΅©σ΅©σ΅© β€ πΆ3 βπ£β0,β , βπ£β β πβ , σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨σ΅¨ σ΅© σ΅© σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨σ΅¨ πΆ2 σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨π£β σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨ β€ σ΅©σ΅©σ΅©π£β σ΅©σ΅©σ΅© β€ πΆ3 σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨π£β σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨σ΅¨ , βπ£β β πβ , σ΅© σ΅© σ΅© σ΅© πΆ2 σ΅©σ΅©σ΅©π£β σ΅©σ΅©σ΅©1,β β€ σ΅©σ΅©σ΅©π£β σ΅©σ΅©σ΅©1 β€ πΆ3 βπ£β1,β , βπ£β β πβ .
4. πΏ2 -Norm Error Estimate
(23)
Lemma 10 (see [20]). Assume that π’ β πΏβ (π»01 β©π»2 ) for π > 0 fixed, there is a constant πΆ = πΆ(π) > 0 independent of β and π’, such that for all 0 < π‘ β€ π, π‘
σ΅© σ΅©σ΅© σ΅©σ΅©(π’ β πβ π’) (π‘)σ΅©σ΅©σ΅©1 β€ πΆβ (βπ’ (π‘)β2 + β« βπ’ (π )β2 ππ ) . 0
(31)
Mathematical Problems in Engineering
5
Now we consider an πΏ2 -estimate for the Ritz-Volterra projection. This estimate is optimal with respect to the order of convergence, but requires π3,π -regularity of the solution. Therefore, it is suboptimal with respect to the regularity of the solution and can be useful for π close to 1. Namely, we have the following result.
Seting π£β = ππ in (34), we get (ππ‘ ππ , πΌββ ππ ) + π΄ (ππ , πΌββ ππ ) = (ππ , πΌββ ππ ) + πΏπ΄βπ΄ (ππβ1 , πΌββ ππ )
Lemma 11 (see [20]). Assume that, for some π > 1, π’ β πΏβ (π3,π (Ξ©)). Then for π > 0 fixed there exists a positive constant πΆ = πΆ(π) > 0 independent of β and π’, such that, for all 0 < π‘ β€ π,
(32)
Then we prove the following πΏ2 -norm error estimate. Theorem 12. Let π’ and π’βπ be the solution of (2) and (14), respectively. Then we have a constant πΆ > 0 independent of β, Ξπ‘, and π’, such that π‘
π σ΅© σ΅© σ΅©σ΅© π πσ΅© 2 σ΅© σ΅© σ΅©σ΅©π’ β π’β σ΅©σ΅©σ΅© β€ πΆβ (σ΅©σ΅©σ΅©π’0 σ΅©σ΅©σ΅©3,π + β« σ΅©σ΅©σ΅©π’π‘ σ΅©σ΅©σ΅©3,π ππ )
0
π‘π
σ΅© σ΅© σ΅© σ΅© + πΆΞπ‘ β« (σ΅©σ΅©σ΅©π’π‘π‘ σ΅©σ΅©σ΅© + σ΅©σ΅©σ΅©π’π‘ σ΅©σ΅©σ΅©1 ) ππ . 0
πβ1
β β π€π,π π΅ (π‘π , π‘π ; ππ , πΌββ ππ ) . π=0
We estimate the terms on the right-hand side:
π‘
σ΅©σ΅© σ΅© 2 σ΅©σ΅©(π’ β πβ π’) (π‘)σ΅©σ΅©σ΅© β€ πΆβ (βπ’ (π‘)β3,π + β« βπ’ (π )β3,π ππ ) . 0
(33)
σ΅¨σ΅¨ π΄βπ΄ πβ1 β π σ΅¨σ΅¨ σ΅¨ σ΅¨σ΅¨ σ΅¨ σ΅¨σ΅¨πΏ (π , πΌβ π )σ΅¨σ΅¨σ΅¨ β€ πΆββπ΄β1,β β« σ΅¨σ΅¨σ΅¨σ΅¨βππβ1 σ΅¨σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨σ΅¨βππ σ΅¨σ΅¨σ΅¨ ππ₯ σ΅¨σ΅¨ σ΅¨ Ξ© σ΅© σ΅©σ΅© σ΅© β€ πΆββπ΄β1,β σ΅©σ΅©σ΅©σ΅©βππβ1 σ΅©σ΅©σ΅©σ΅© σ΅©σ΅©σ΅©βππ σ΅©σ΅©σ΅© σ΅© σ΅©2 σ΅¨ σ΅¨2 β€ πΆσ΅©σ΅©σ΅©σ΅©ππβ1 σ΅©σ΅©σ΅©σ΅© + πσ΅¨σ΅¨σ΅¨ππ σ΅¨σ΅¨σ΅¨1 , σ΅¨σ΅¨ σ΅¨ σ΅¨σ΅¨Ξπ‘πΏπ΄βπ΄ (ππ‘ πβ π’π , πΌβ ππ )σ΅¨σ΅¨σ΅¨ β€ πΆβΞπ‘ σ΅©σ΅©σ΅©βππ‘ πβ π’π σ΅©σ΅©σ΅© σ΅©σ΅©σ΅©βππ σ΅©σ΅©σ΅© β σ΅© σ΅¨σ΅¨ σ΅©σ΅© σ΅© σ΅¨σ΅¨ σ΅©σ΅© σ΅© σ΅© πσ΅© π β€ πΆΞπ‘ σ΅©σ΅©βππ‘ πβ π’ σ΅©σ΅©σ΅© σ΅©σ΅©σ΅©π σ΅©σ΅©σ΅© β€ πΆΞπ‘ β«
Proof. Let ππ = π’βπ β πβ π’π , ππ = π’π β πβ π’π , from (2), (14), and (30), we have πβ1
(ππ‘ ππ , πΌββ π£β ) + π΄ (ππ , πΌββ π£β ) + β π€π,π π΅ (π‘π , π‘π ; ππ , πΌββ π£β )
π‘
π σ΅¨ π σ΅¨2 σ΅¨ σ΅¨σ΅¨ π σ΅¨ β π σ΅¨ σ΅¨σ΅¨π (πβ π’, πΌβ π )σ΅¨σ΅¨σ΅¨ β€ πσ΅¨σ΅¨σ΅¨π σ΅¨σ΅¨σ΅¨1 + πΆ(Ξπ‘ β« σ΅¨σ΅¨σ΅¨π·π‘ πβ π’ (π )σ΅¨σ΅¨σ΅¨1 ππ ) 0
0
σ΅¨σ΅¨πβ1 σ΅¨σ΅¨ πβ1 σ΅¨σ΅¨ σ΅¨ σ΅¨σ΅¨ β π€π,π π΅ (π‘π , π‘π ; ππ , πΌβ ππ )σ΅¨σ΅¨σ΅¨ β€ πσ΅¨σ΅¨σ΅¨ππ σ΅¨σ΅¨σ΅¨2 + πΆ β Ξπ‘σ΅¨σ΅¨σ΅¨σ΅¨ππ σ΅¨σ΅¨σ΅¨σ΅¨2 , β σ΅¨ σ΅¨1 σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨ σ΅¨1 σ΅¨σ΅¨π=0 σ΅¨σ΅¨ π=0
β Ξπ‘ [π΄ (ππ‘ πβ π’π , πΌββ π£β ) β π΄ (ππ‘ πβ π’π , πΌββ π£β )]
π‘
π σ΅© π σ΅©2 σ΅©2 σ΅© σ΅¨σ΅¨ β π σ΅¨ σ΅¨σ΅¨(ππ , πΌβ π )σ΅¨σ΅¨σ΅¨ β€ πΆσ΅©σ΅©σ΅©π σ΅©σ΅©σ΅© + πΆΞπ‘ β« σ΅©σ΅©σ΅©π’π‘π‘ (π )σ΅©σ΅©σ΅© ππ π‘
π‘π
πβ1
+ [ β« π΅ (π‘π , π ; πβ π’π (π ) , πΌββ π£β ) ππ 0
+ πΆβ4
πβ1
β β π€π,π π΅ (π‘π , π‘π ; πβ π’π , πΌββ π£β )] . (34) π
β ππ‘ π’ + ππ‘ π ,
πΏπ΄βπ΄ (ππβ1 , πΌββ π£β ) = [π΄ (ππβ1 , πΌββ π£β ) β π΄ (ππβ1 , πΌββ π£β )] , πΏπ΄βπ΄ (ππ‘ πβ π’π , πΌββ π£β ) = [π΄ (ππ‘ πβ π’π , πΌββ π£β ) βπ΄ (ππ‘ πβ π’
π
1 π‘π σ΅©σ΅© σ΅©2 β« σ΅©π’ (π )σ΅©σ΅© ππ . Ξπ‘ π‘πβ1 σ΅© π‘ σ΅©3,π (37)
π=0
Let π =
2
2
π‘
+ [π΄ (ππβ1 , πΌββ π£β ) β π΄ (ππβ1 , πΌββ π£β )]
π
σ΅©σ΅© σ΅©σ΅©2 σ΅© π σ΅©2 σ΅©σ΅©π’π‘ σ΅©σ΅©1 ππ + πΆσ΅©σ΅©σ΅©π σ΅©σ΅©σ΅© ,
π σ΅© σ΅© σ΅¨ σ΅¨2 β€ πσ΅¨σ΅¨σ΅¨ππ σ΅¨σ΅¨σ΅¨1 + πΆ(Ξπ‘ β« σ΅©σ΅©σ΅©π’π‘ (π )σ΅©σ΅©σ΅©1 ππ ) ,
= (π’π‘π β ππ‘ π’π , πΌββ π£β ) + (ππ‘ ππ , πΌββ π£β )
π’π‘π
π‘π
π‘πβ1
π=0
π
(36)
β Ξπ‘πΏπ΄βπ΄ (ππ‘ πβ π’π , πΌββ ππ ) + ππ (πβ π’, πΌββ ππ )
Let π = πΆ0 /6, and use numerical quadrature error estimates to get σ΅©σ΅© π σ΅©σ΅©2 σ΅©σ΅©σ΅© πβ1 σ΅©σ΅©σ΅©2 σ΅©σ΅©π σ΅©σ΅© β σ΅©σ΅©π σ΅©σ΅© σ΅¨ σ΅¨2 + πΆ0 σ΅¨σ΅¨σ΅¨ππ σ΅¨σ΅¨σ΅¨1 2Ξπ‘ β€
, πΌββ π£β ) ] ,
π‘π
πβ1 π‘π πΆ0 σ΅¨σ΅¨ π σ΅¨σ΅¨2 σ΅¨ π σ΅¨2 σ΅© σ΅© σ΅¨σ΅¨π σ΅¨σ΅¨1 + πΆ β Ξπ‘σ΅¨σ΅¨σ΅¨σ΅¨π σ΅¨σ΅¨σ΅¨σ΅¨1 + πΆ(Ξπ‘ β« σ΅©σ΅©σ΅©π’π‘ (π )σ΅©σ΅©σ΅©1 ππ ) 2 0 π=0 π‘π σ΅©2 σ΅© σ΅© σ΅©2 + πΆσ΅©σ΅©σ΅©σ΅©ππβ1 σ΅©σ΅©σ΅©σ΅© + πΆσ΅©σ΅©σ΅©ππ σ΅©σ΅©σ΅© + πΆΞπ‘ β«
ππ (πβ π’, πΌββ π£β ) = [ β« π΅ (π‘π , π ; πβ π’π (π ) , πΌββ π£β ) ππ 0
π‘πβ1
πβ1
β β π€π,π π΅ (π‘π , π‘π ; πβ π’π , πΌββ π£β )] . π=0
(35)
+ πΆΞπ‘ β«
π‘π
π‘πβ1
2
σ΅©σ΅© σ΅©σ΅©2 σ΅©σ΅©π’π‘ σ΅©σ΅©1 ππ‘
π‘π σ΅©2 σ΅©2 σ΅©σ΅© σ΅© 4 1 β« σ΅©σ΅©σ΅©π’π‘ (π )σ΅©σ΅©σ΅©3,π ππ . σ΅©σ΅©π’π‘π‘ (π )σ΅©σ΅©σ΅© ππ + πΆβ Ξπ‘ π‘ πβ1
(38)
6
Mathematical Problems in Engineering the initial function π’(π₯, 0) = 0. Denote the numerical solution of π’(π₯, π) by π’β and set πΎβ = βπ’(π₯, π)βπ’2β β/βπ’(π₯, π)βπ’β β with fixed ratio Ξπ‘/β2 . The numerical results are presented in Tables 1 and 2. It is observed that the results support our theory.
Acknowledgments This work is supported by the Excellent Young and Middleaged Scientists Research Fund of Shandong Province (no. 2008BS09026); National Natural Science Foundation of China (no. 11171193); Natural Science Foundation of Shandong Province (no. ZR2011AM016).
References Figure 2: Triangulation and circumcenter dual mesh. Table 1: Error behavior for Ξπ‘/β2 = 3.90625π β 4. Ξπ‘ 1/10 1/40 1/160 1/640
β 1/16 1/32 1/64 1/128
βπ’(π₯, π) β π’β β 6.853070480441π β 3 1.690155085494π β 3 4.225622073870π β 4 1.052607231633π β 4
πΎβ 4.0 4.0 4.0
Table 2: Error behavior for Ξπ‘/β2 = 1.953125π β 4. Ξπ‘ 1/20 1/80 1/320 1/1280
β 1/16 1/32 1/64 1/128
βπ’(π₯, π) β π’β β 4.671190948063π β 3 1.150735715485π β 3 2.880323203978π β 4 7.164754698408π β 5
πΎβ 4.0 4.0 4.0
Thus, multiplying each term on both sides of (38) by Ξπ‘, summing over π, and employing Gronwallβs lemma, we obtain π‘π σ΅© 0σ΅© σ΅© σ΅© σ΅©σ΅© π σ΅©σ΅© 2 σ΅©σ΅©π σ΅©σ΅© β€ πΆ σ΅©σ΅©σ΅©σ΅©π σ΅©σ΅©σ΅©σ΅© + πΆβ β« σ΅©σ΅©σ΅©π’π‘ σ΅©σ΅©σ΅©3,π ππ 0
π‘π
σ΅© σ΅© σ΅© σ΅© + πΆΞπ‘ β« (σ΅©σ΅©σ΅©π’π‘π‘ σ΅©σ΅©σ΅© + σ΅©σ΅©σ΅©π’π‘ σ΅©σ΅©σ΅©1 ) ππ .
(39)
0
And βπ0 β β€ πΆβ2 βπ’0 β3,π ; hence (33) follows from the above analysis and Lemma 11.
5. Numerical Experiments In this section, we present a numerical example for solving the problem (2) by using the symmetric modified finite volume element scheme presented in Section 2. Let Ξ© = (0, 1) Γ (0, 1), π = 1, πβ be Delaunay triangulation generated by EasyMesh [22] over Ξ© with mesh size β as shown in Figure 2 and time step be Ξπ‘. We consider the case of π11 = π₯1 + π₯2 + 3, π12 = π₯1 + π₯2 + 4, π12 = π21 = β(π₯1 + π₯2 ), π11 = 1, π12 = 1/2, π12 = π21 = 0, the exact solution π’(π₯, π‘) = (π‘2 + sin(ππ‘)) sin(ππ₯1 ) sin(ππ₯2 ), and
[1] J. H. Cushman and T. R. Ginn, βNonlocal dispersion in media with continuously evolving scales of heterogeneity,β Transport in Porous Media, vol. 13, no. 1, pp. 123β138, 1993. [2] J. H. Cushman, B. X. Hu, and F. Deng, βNonlocal reactive transport with physical and chemical heterogeneity: localization errors,β Water Resources Research, vol. 31, no. 9, pp. 2219β2237, 1995. [3] G. Dagan, βThe significance of heterogeneity of evolving scales to transport in porous formations,β Water Resources Research, vol. 30, no. 12, pp. 3327β3336, 1994. [4] V. V. Shelukhin, βA non-local in time model for radionuclides propagation in Stokes fluids, dynamics of fluids with free boundaries,β Siberian Branch of the Russian Academy of Sciences, Institute of Hydrodynamics, vol. 107, pp. 180β193, 1993. [5] M. Renardy, W. J. Hrusa, and J. A. Nohel, Mathematical Problems in Viscoelasticity, vol. 35, Longman Scientific and Technical, Essex, UK, 1987. [6] W. Allegretto, Y. Lin, and A. Zhou, βA box scheme for coupled systems resulting from microsensor thermistor problems,β Dynamics of Continuous, Discrete and Impulsive Systems, vol. 5, no. 1β4, pp. 209β223, 1999. [7] J. R. Cannon and Y. Lin, βNonclassical π»1 -projection and Galerkin methods for nonlinear parabolic integro-differential equations,β Calcolo, vol. 25, no. 3, pp. 187β201, 1988. [8] Y. P. Lin, V. ThomΒ΄ee, and L. B. Wahlbin, βRitz-Volterra projections to finite-element spaces and applications to integrodifferential and related equations,β SIAM Journal on Numerical Analysis, vol. 28, no. 4, pp. 1047β1070, 1995. [9] Y. P. Lin, βOn maximum norm estimates for Ritz-Volterra projection with applications to some time dependent problems,β Journal of Computational Mathematics, vol. 15, no. 2, pp. 159β 178, 1997. [10] I. H. Sloan and V. ThomΒ΄ee, βTime discretization of an integrodifferential equation of parabolic type,β SIAM Journal on Numerical Analysis, vol. 23, no. 5, pp. 1052β1061, 1986. [11] T. Zhang, βThe stability and approximation properties of RitzVolterra projection and application. I,β Numerical Mathematics. English Series, vol. 6, no. 1, pp. 57β76, 1997. [12] V. ThomΒ΄ee and L. B. Wahlbin, βLong-time numerical solution of a parabolic equation with memory,β Mathematics of Computation, vol. 62, no. 206, pp. 477β496, 1994. [13] R. E. Bank and D. J. Rose, βSome error estimates for the box method,β SIAM Journal on Numerical Analysis, vol. 24, no. 4, pp. 777β787, 1987.
Mathematical Problems in Engineering [14] Z. Q. Cai, βOn the finite volume element method,β Numerische Mathematik, vol. 58, no. 7, pp. 713β735, 1991. [15] Z. Q. Cai and S. McCormick, βOn the accuracy of the finite volume element method for diffusion equations on composite grids,β SIAM Journal on Numerical Analysis, vol. 27, no. 3, pp. 636β655, 1990. [16] W. Hackbusch, βOn first and second order box schemes,β Computing, vol. 41, no. 4, pp. 277β296, 1989. [17] J. Huang and S. Xi, βOn the finite volume element method for general self-adjoint elliptic problems,β SIAM Journal on Numerical Analysis, vol. 35, no. 5, pp. 1762β1774, 1998. [18] R. Li, Z. Chen, and W. Wu, Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods, vol. 226, Marcel Dekker, New York, NY, USA, 2000. [19] I. D. Mishev, βFinite volume methods on Voronoi meshes,β Numerical Methods for Partial Differential Equations, vol. 14, no. 2, pp. 193β212, 1998. [20] R. Ewing, R. Lazarov, and Y. Lin, βFinite volume element approximations of nonlocal reactive flows in porous media,β Numerical Methods for Partial Differential Equations, vol. 16, no. 3, pp. 285β311, 2000. [21] S. Liang, X. Ma, and A. Zhou, βA symmetric finite volume scheme for selfadjoint elliptic problems,β Journal of Computational and Applied Mathematics, vol. 147, no. 1, pp. 121β136, 2002. [22] EasyMesh web site, http://www-dinma.univ.trieste.it/nirftc/ research/easymesh/.
7
Advances in
Operations Research Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Advances in
Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Applied Mathematics
Algebra
Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Probability and Statistics Volume 2014
The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of
Differential Equations Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014
Submit your manuscripts at http://www.hindawi.com International Journal of
Advances in
Combinatorics Hindawi Publishing Corporation http://www.hindawi.com
Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of Mathematics and Mathematical Sciences
Mathematical Problems in Engineering
Journal of
Mathematics Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Discrete Mathematics
Journal of
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Discrete Dynamics in Nature and Society
Journal of
Function Spaces Hindawi Publishing Corporation http://www.hindawi.com
Abstract and Applied Analysis
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of
Journal of
Stochastic Analysis
Optimization
Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014