DOI: 10 - MDPI

0 downloads 0 Views 1MB Size Report
Supplementary Figures. ZIF-67. ZIF-8. Figure S1. Photograph of synthesized ZIF-8 and ZIF-67. Figure S2. Photograph of PBI composite membranes containing 5 ...
Supporting Information

Phosphoric Acid Doped Polybenzimidazole (PBI)/Zeolitic Imidazolate Framework Composite Membranes with Significantly Enhanced Proton Conductivity under Low Humidity Conditions Jorge Escorihuela 1, Óscar Sahuquillo 2, Abel Garcí a-Bernabé1, Enrique Giménez 2 and Vicente Compañ 1,* 1

2

*

Escuela Técnica Superior de Ingenieros Industriales – Departamento de Termodinámica Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46020 Valencia, Spain; [email protected] (J.E.); [email protected] (A.G.-B.) Instituto de Tecnología de Materiales, Universitat Politècnica de València, Camino de Vera s/n, 46020 Valencia, Spain; [email protected] (O.S.); [email protected] (E.G.) Correspondence: [email protected]; Tel.: +34-96-387-9328

1. Supplementary Tables Table S1. Comparison of proton conductivities of different membranes containing zeolitic imidazolate framework (ZIFs). Polymer

MOF

Additive

Conditions

polyetherimide (PEI) PEI PEI poly(vinylalcohol) (PVA) PVPA Nafion sulfonated poly(ether ether ketone) (SPEEK) SPEEK PBI PBI PBI

ZIF-8 ZIF-67 ZIF-mix ZIF-8 ZIF-8 ZIF-8 ZIF-8 ZIF-8 ZIF-8 ZIF-67 ZIF-mix

TBA TBA TBA PAMS ----GO ----CNTs H3PO4 H3PO4 H3PO4

90 °C, anhydrous 90 °C, anhydrous 90 °C, anhydrous 80 °C, 100 % RH 140 °C, anhydrous 120 °C, 40 % RH 120 °C, 40 % RH 120 °C, 430 % RH 180 °C, anhydrous 180 °C, anhydrous 180 °C, anhydrous

Conductivity (S· cm-1) 1.2 × 10−4 0.8 × 10−4 0.8 × 10−5 0.134 3.2 × 10-3 0.28 0.025 0.05 3.1 × 10-3 0.042 0.092

Ref. 1 1 1 2 3 4 5 5 This work This work This work

Table S2. Comparison of proton conductivities of Nafion-based membranes containing MOFs. MOF Nafion MIL-101 CPO-27-Mg MIL-53 HKUST-1 MOF-808- SO3H UiO-66-NH2 2:1 UiO-66-NH2:UiO-66- SO3H UiO-66-SO3H

Additive ZIF-8, GO Phytic acid --------H3PO4 ----graphene oxide (GO) ---------

−1−

Conditions 120 °C, 40 % RH 100 °C, 100% RH 50 °C, 100% RH 50 °C, 100% RH 25 °C, 100% RH 80 °C, 35% RH 120 °C, anhydrous 90 °C, 95% RH 80 °C, 95% RH

Conductivity (S·cm−1) 0.28 0.228 0.011 9.8  10-3 0.018 2.98  10-3 3.4  10-3 0.256 0.17

Ref. 4 6 7 7 8 9 10 11 12

Table S3. Comparison of proton conductivities of SPEEK-based membranes containing MOFs.

MOF MIL-101 MIL-101-SO3H UiO-66- SO3H

Additive Phosphotungstic acid ----GO

Conditions 65 °C, 100% RH 70 °C, 100% RH 70 °C, 95% RH

Conductivity (S·cm-1) 0.272 0.306 0.173

Ref. 13 14 5

Table S4. Textural properties of ZIF materials obtained by nitrogen adsorption isotherms.

Sample

BET surface area (m2·g-1)

ZIF-8 ZIF-67 ZIF-mix

1150.73 1378.77 1179.40

Langmuir surface area (m2·g-1) 1540.83 1816.52 1546.93

Micropore volume (cm3·g-1) 0.572 0.634 0.577

Table S5. Acid leaching degree for all the membranes.

Membrane PBI PBI@ZIF-8 5 wt.% PBI@ZIF-67 5 wt.% PBI@ZIF-mix 5 wt.%

Acid leaching degree (%) 36 28 29 30

2. Supplementary Figures.

ZIF-8

ZIF-67

Figure S1. Photograph of synthesized ZIF-8 and ZIF-67.

Figure S2. Photograph of PBI composite membranes containing 5 wt.% of ZIF-8 (PBI@ZIF-8), ZIF-67 (PBI@ZIF-67) and a binary mixture of ZIF-8 and ZIF-67 (PBI@ZIF-mix).

−2−

(a)

(b) PBI@ZIF-67

Intensity (a.u.)

5

10

15

20

25

30

35

40

45

50

5

10

15

20

(114) (233) (134) (044) (244) (235)

ZIF-8 simulated

(112) (022) (013) (222)

ZIF-67 synthesized

(002)

(114) (233) (134) (044) (244) (235)

(112) (022) (013) (222)

(002)

(011)

ZIF-8 synthesized

(011)

Intensity (a.u.)

PBI@ZIF-8

25

30

ZIF-67 simulated 35

40

45

50

2 theta (degree)

2 theta (degree)

Figure S3. (a) XRD patterns of simulated ZIF-8 (black), ZIF-8 as synthesized (red) and PBI@ZIF-8 membrane (blue); (b) XRD patterns of simulated ZIF-67 (black), ZIF-67 as synthesized (red) and PBI@ZIF-7 membrane (blue).

Figure S4. EDX of the PBI@ZIF-8 membrane with 5 wt. % loading of ZIF-8.

Figure S5. EDX of the PBI@ZIF-67 membrane with 5 wt.% loading of ZIF-67.

−3−

Figure S6. EDX of the PBI@ZIF-mix membrane with 5 wt.% loading of ZIF-mix.

100

Transmittance (%)

90 80 70 60 50 40 30 4000

3500

3000

2500

2000

1500

-1 Wavenumber (cm )

Figure S7. FT-IR spectra of ZIF-8.

−4−

1000

500

100

Transmittance (%)

90 80 70 60 50 40 30 4000

3500

3000

2500

2000

1500

1000

500

-1 Wavenumber (cm )

Figure S8. FT-IR spectra of ZIF-67.

100

Transmittance (%)

90 80 70 60 50 40 30 4000

3500

3000

2500

2000

1500

-1 Wavenumber (cm ) Figure S9. FT-IR spectra of ZIF-mix.

−5−

1000

500

PBI@ZIF-8 PBI@ZIF-mix

Transmittance (%)

PBI PBI@ZIF-67

3500

3000

2500

2000

1500

1000

-1

Wavenumber (cm ) Figure S10. FT-IR spectra of composite membranes PBI@ZIF-8, PBI@ZIF-67 and PBI@ZIF-mix. All membranes contain the ZIF compound at 5 wt.%.

100

Transmittance (%)

90 80 70 60 50 ZIF-8 ZIF-67 ZIF-mix

40

30 450 445 440 435 430 425 420 415 410 405 400 -1

Wavenumber (cm )

Figure S11. Comparison of 450-400 cm-1 region for FT-IR spectra of composite membranes PBI@ZIF8, PBI@ZIF-67 and PBI@ZIF-mix. All membranes contain the ZIF compound at 5 wt.%.

−6−

Figure S12. Thermogravimetric analysis of pristine PBI.

Figure S13. Thermogravimetric analysis of ZIF-8 compound.

−7−

Figure S14. Thermogravimetric analysis of ZIF-67 compound.

Figure S15. Thermogravimetric analysis of ZIF-mix.

−8−

180 PBI PBI @ZIF-8 PBI @ZIF-67 PBI @ZIF-mix PBI dry

160 140

Stress (MPa)

120 100 80 60 40 20 0 0

5

10

15

20

25

Strain (%)

Figure S16. Stress-strain curves of PBI (dry and 75% RH) and composite membranes PBI@ZIF-8, PBI@ZIF-67 and PBI@ZIF-mix. All membranes contain the ZIF compound at 5 wt.%.

H3PO4 uptake swelling

(%)(%) Uptake uptake Acid

150

30

30

20

20

10

10

Swelling (%)

(a)

200

0 PBI

0.1 % wt

0.5 % wt

1 % wt

5 % wt

10 % wt

Figure S17.200H3PO4 uptake and swelling ratios of PBI and PBI composite membranes

(b) different 180 3 4 containing contents (wt.%) of ZIF-67. H PO uptake swelling

30

20

10

30

−9−

20

10

Swelling (%)

Uptake (%)

160 140 120

Figure S18. Thermogravimetric analysis of phosphoric acid doped PBI membrane and phosphoric acid doped PBI composite membranes containing 5 wt.% of ZIF-8, ZIF-67 and ZIF-mix. Inset: Zoom at the 180–600 °C region. PBI |Sig| [S/cm]

-1

PBI acid doped|Sig| [S/cm]

-2

log s dc

-3 -4 -5 -6 -7

0

20

40

60

80 100 120 140 Temperature (°C)

160

180

200

Figure S19. Comparison of PBI proton conductivity before (blue spots) and after (red spots) phosphoric acid doping.

−10−

Figure S20. Comparison of proton conductivity under wet conditions for composite phosphoric acid doped PBI membranes containing ZIF-67 at different content (0.5, 1, 5 and 10 wt.%). 1E-02

20ºC

30ºC 40ºC 1E-03

s (S/cm)

50ºC 60ºC 70ºC

1E-04

80ºC 90ºC 100ºC

1E-05 1E-01

1E+01

1E+03

1E+05

Frequency (Hz)

1E+07

110ºC 120ºC

Figure S21. Conductivity (S/cm) vs. Frequency (Hz) for PBI@ZIF-8 with 5 wt.% content of ZIF-8 at different temperatures (20−120 °C) under wet conditions.

−11−

1E-02

s (S/cm)

1E-03

1E-04

1E-05

1E-06 1E-01

1E+01

1E+03

1E+05

1E+07

Frequency (Hz)

0ºC 10ºC 20ºC 30ºC 40ºC 50ºC 60ºC 70ºC 80ºC 90ºC 100ºC 110ºC 120ºC 130ºC 140ºC 150ºC 160ºC 170ºC 180ºC 190ºC 200ºC

Figure S22. Conductivity (S/cm) vs. Frequency (Hz) for PBI@ZIF-8 with 5 wt.% content of ZIF-8 at different temperatures (0−200 °C) under anhydrous conditions.

1E+00

20ºC 30ºC 40ºC

1E-01

s (S/cm)

50ºC 60ºC 70ºC

1E-02

80ºC 90ºC 1E-03

100ºC 110ºC

1E-04 1E-01

120ºC 1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

Frecuency (Hz)

Figure S23. Conductivity (S/cm) vs. Frequency (Hz) for PBI@ZIF-67 with 5 wt.% content of ZIF-67 at different temperatures (20−120 °C) under wet conditions.

−12−

0ºC 10ºC 20ºC 30ºC 40ºC 50ºC 70ºC 80ºC 90ºC 100ºC 110ºC 120ºC 130ºC 150ºC 160ºC 170ºC 180ºC 190ºC

1E-01

s (S/cm)

1E-02

1E-03

1E-04

1E-05 1E-01

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

Frecuency (Hz)

Figure S24. Conductivity (S/cm) vs. Frequency (Hz) for PBI@ZIF-67 with 5 wt. % content of ZIF-67 at different temperatures (0−200 °C) under anhydrous conditions. 1E+00

1E-01

s (S/cm)

1E-02

20ºC 40ºC

1E-03

60ºC

80ºC

1E-04

100ºC 1E-05

1E-06 1E-01

120ºC 1E+01

1E+03

1E+05

1E+07

Frequency (Hz)

Figure S25. Conductivity (S/cm) vs. Frequency (Hz) for PBI@ZIF-mix with 5 wt.% content of ZIF-mix at different temperatures (20−120 °C) under wet conditions.

−13−

1E+00 0ºC

1E-01

20ºC

1E-02

40ºC

s (S/cm)

1E-03

60ºC

1E-04

80ºC

1E-05

100ºC 120ºC

1E-06

140ºC 1E-07 1E-08 1E-01

160ºC 1E+01

1E+03

1E+05

1E+07

Frequency (Hz)

180ºC 200ºC

Figure S26. Conductivity (S/cm) vs. Frequency (Hz) for PBI@ZIF-mix with 5 wt.% content of ZIF-mix at different temperatures (0−200 °C) under anhydrous conditions.

Figure S27. Arrhenius plot for pure PBI membrane.

−14−

Figure S28. Arrhenius plot for PBI@ZIF-8 membrane with 5 wt.% content of ZIF-8.

Figure S29. Arrhenius plot for PBI@ZIF-67 membrane with 5 wt.% content of ZIF-67.

−15−

Figure S30. Arrhenius plot for PBI@ZIF-mix membrane with 5 wt.% content of ZIF-mix.

−16−

References 1.

2.

3.

4.

5.

6. 7.

8. 9.

10. 11. 12.

13.

14.

Vega, J.; Andrio, A.; Lemus, A.A.; del Castillo, L.F.; Compañ, V. Conductivity study of zeolitic imidazolate frameworks, tetrabutylammonium hydroxide doped with zeolitic imidazolate frameworks, and mixed matrix membranes of polyetherimide/tetrabutylammonium hydroxide doped with zeolitic imidazolate frameworks for proton conducting applications. Electrochim. Acta 2017, 258, 153–166. Erkartal, M.; Usta, H.; Citir, M.; Sen, U. Proton conducting poly(vinyl alcohol) (PVA)/ poly(2-acrylamido-2methylpropane sulfonic acid) (PAMPS)/ zeolitic imidazolate framework (ZIF) ternary composite membrane. J. Membr. Sci. 2016, 499, 156–163. Sen, U.; Erkartal, M.; Kung, C.-W.; Ramani, V.; Hupp, J.T.; Farha, O.K. Proton conducting self-assembled metal–organic framework/polyelectrolyte hollow hybrid nanostructures. ACS Appl. Mater. Interfaces 2016, 8, 23015–23021. Yang, L.; Tang, B.; Wu, P. Metal–organic framework–graphene oxide composites: a facile method to highly improve the proton conductivity of PEMs operated under low humidity. J. Mater. Chem. A 2015, 3, 15838– 15842. Sun, H.; Tang, B.; Wu, P. Two-Dimensional Zeolitic imidazolate framework/carbon nanotube hybrid networks modified proton exchange membranes for improving transport properties. ACS Appl. Mater. Interfaces 2017, 9, 35075–35085. Sun, H.; Tang, B.; Wu, P. Rational design of S-UiO-66@GO hybrid nanosheets for proton exchange membranes with significantly enhanced transport performance. ACS Appl. Mater. Interfaces 2017, 9, 26077–26087. Li, Z.; He, G.; Zhang, B.; Cao, Y.; Wu, H.; Jiang, Z.; Tiantian, Z. Enhanced proton conductivity of Nafion hybrid membrane under different humidities by incorporating metal–organic frameworks with high phytic acid loading. ACS Appl. Mater. Interfaces 2014, 6, 9799–9807. Kim, H.J.; Talukdar, K.; Choi, S.J. Tuning of Nafion® by HKUST-1 as coordination network to enhance proton conductivity for fuel cell applications J. Nanopart. Res. 2016, 18, 47. Patel, H.A.; Mansor, N.; Gadipelli, S.; Brett, D.J.L.; Guo, Z. Superacidity in Nafion/MOF hybrid membranes retains water at low humidity to enhance proton conduction for fuel cells. ACS Appl. Mater. Interfaces 2016, 8, 30687–30691. Rao, Z.; Feng, K.; Tang, B.; Wu, P. Construction of well interconnected metal-organic framework structure for effectively promoting proton conductivity of proton exchange membrane. J. Membr. Sci. 2017, 533, 160–170. Rao, Z.; Tang, B.; Wu, P. Proton conductivity of proton exchange membrane synergistically promoted by different functionalized metal–organic frameworks. ACS Appl. Mater. Interfaces 2017, 9, 22597–22603. Donnadio, A.; Narducci, R.; Casciola, M.; Marmottini, F.; D'Amato, R.; Jazestani, M.; Chiniforoshan, H.; Costantino, F. Mixed membrane matrices based on Nafion/UiO-66/SO3H-UiO-66 nano-MOFs: revealing the effect of crystal size, sulfonation, and filler loading on the mechanical and conductivity properties. ACS Appl. Mater. Interfaces 2017, 9, 42239–42246. Zhang, B.; Cao, Y.; Li, Z.; Wu, H.; Yin, Y.; Cao, L.; He, X.; Jiang, Z. Proton exchange nanohybrid membranes with high phosphotungstic acid loading within metal-organic frameworks for PEMFC applications. Electrochim. Acta 2017, 240, 186–194. Li, Z.; He, G.; Zhao, Y.; Cao, Y.; Wu, H.; Li, Y.; Jiang, Z. Enhanced proton conductivity of proton exchange membranes by incorporating sulfonated metal-organic frameworks. J. Power Sources 2014, 262, 372–379.

−17−