Dynamic Optimization of Semi-batch Processes using PMP and ...

1 downloads 0 Views 1MB Size Report
May 10, 2017 - Processes using PMP and Parsimonious Parameterization. 1 Max Planck Institute for Dynamics of Complex Technical Systems. 2 Laboratoire ...
Dynamic Optimization of Semi-batch Processes using PMP v

and Parsimonious Parameterization E. Aydin1,4 , D. Bonvin2 , K. Sundmacher1,3 1 Max

Planck Institute for Dynamics of Complex Technical Systems

2 Laboratoire 3 Chair 4

d’Automatique, École Polytechnique Fédérale de Lausanne

for Process Systems Engineering, Otto-von-Guericke University

International Max Planck Research School (IMPRS) for Advanced Methods in Process and Systems Engineering ESCAPE, Barcelona 05.10.2017

Outline •

Dynamic optimization & available methods



Proposed indirect–based parsimonious algorithm



Case Studies:

I.

Binary batch distillation column

II. Semi-batch hydroformylation reactor E. Aydin – Dynamic optimization using indirect methods

Escape 2017

2

Outline •

Dynamic optimization & available methods



Proposed indirect–based parsimonious algorithm



Case Studies:

I.

Binary batch distillation column

II. Semi-batch hydroformylation reactor E. Aydin – Dynamic optimization using indirect methods

Escape 2017

3

Dynamic Optimization

min 𝐽 = 𝜙(𝑥(𝑡𝑓 ))

: cost function

𝑡𝑓 ,𝑢(𝑡)

s.t. 𝑥 = 𝐹 𝑥, 𝑢 ,

𝑆 𝑥(𝑡) ≤ 0, path

𝑥 0 = 𝑥0

: system equations

𝑇(𝑥(𝑡𝑓 )) ≤ 0

: constraints

terminal

E. Aydin – Dynamic optimization using indirect methods

Escape 2017

4

Dynamic Optimization

Solution Methods

E. Aydin – Dynamic optimization using indirect methods

Escape 2017

5

Numerical Solution Methods Direct Methods

E. Aydin – Dynamic optimization using indirect methods

Indirect Methods (PMP)

Escape 2017

6

Numerical Solution Methods Direct Methods Sequential

Simultaneous

- states integrated

- states discretized

- expensive for path constraints

- trade-off between approx. & optim.

Indirect Methods (PMP)

- efficient for large-scale problems

Srinivasan, B., Palanki, S., & Bonvin, D. (2003). Dynamic optimization of batch processes: I. Characterization of the nominal solution. Computers & Chemical Engineering, 27, 1-26. E. Aydin – Dynamic optimization using indirect methods

Escape 2017

7

Numerical Solution Methods Direct Methods

Indirect Methods (PMP)

Sequential

Simultaneous

Shooting

- states integrated

- states discretized

- requires good initial guesses

- expensive for path constraints

- trade-off between approx. & optim.

- no fast convergent - efficient for method large-scale problems available

Gradient-based - convergence problems for path constraints - no fast convergent method available

Srinivasan, B., Palanki, S., & Bonvin, D. (2003). Dynamic optimization of batch processes: I. Characterization of the nominal solution. Computers & Chemical Engineering, 27, 1-26. E. Aydin – Dynamic optimization using indirect methods

Escape 2017

8

Numerical Solution Methods Direct Methods

Indirect Methods (PMP)

Sequential

Simultaneous

Shooting

- states integrated

- states discretized

- requires good initial guesses

- expensive for path constraints

- trade-off between approx. & optim.

- no fast convergent - efficient for method large-scale problems available

Gradient-based - convergence problems for path constraints - no fast convergent method available

Srinivasan, B., Palanki, S., & Bonvin, D. (2003). Dynamic optimization of batch processes: I. Characterization of the nominal solution. Computers & Chemical Engineering, 27, 1-26. E. Aydin – Dynamic optimization using indirect methods

Escape 2017

9

Outline •

Dynamic optimization & available methods



Proposed indirect–based parsimonious algorithm



Case Studies:

I.

Binary batch distillation column

II. Semi-batch hydroformylation reactor E. Aydin – Dynamic optimization using indirect methods

Escape 2017

10

Pontryagin’s Minimum Principle

Lev Pontryagin (1908-1988) E. Aydin – Dynamic optimization using indirect methods

Escape 2017

11

Pontryagin’s Minimum Principle min 𝐻 𝑡 = 𝜆𝑇 𝐹 𝑥, 𝑢 + 𝜇𝑇 𝑆(𝑥)

Hamiltonian

𝑡𝑓 ,𝑢(𝑡) co-states Lagrange multipliers for path constraints

s.t. 𝜆𝑇

=

𝑥 = 𝐹 𝑥, 𝑢 ; 𝑥 0 = 𝑥0 ; 𝜕𝐻 − , 𝜕𝑥

𝜆𝑇

𝑡𝑓 =

𝜕𝜙 𝜕𝑥 𝑡𝑓

+

system equations

𝜕𝑇 𝑇 𝜐 ; 𝜕𝑥 𝑡𝑓

co-states

Bryson, A. E. (1975). Applied Optimal Control: Optimization, Estimation and Control: CRC Press.

E. Aydin – Dynamic optimization using indirect methods

Escape 2017

12

Pontryagin’s Minimum Principle min 𝐻 𝑡 = 𝜆𝑇 𝐹 𝑥, 𝑢 + 𝜇𝑇 𝑆(𝑥)

Hamiltonian

𝑡𝑓 ,𝑢(𝑡) co-states Lagrange multipliers for path constraints

s.t. 𝜆𝑇

=

𝑥 = 𝐹 𝑥, 𝑢 ; 𝑥 0 = 𝑥0 ; 𝜕𝐻 − , 𝜕𝑥

𝜆𝑇

𝑡𝑓 =

𝜇𝑇 𝑆 = 0;

𝜕𝜙 𝜕𝑥 𝑡𝑓

+

system equations

𝜕𝑇 𝑇 𝜐 ; 𝜕𝑥 𝑡𝑓

𝜐𝑇 𝑇 = 0

co-states slackness conditions

Lagrange multipliers

𝜕𝐻(𝑡) 𝜕𝐹 𝜕𝑆 𝑇 𝑇 =𝜆 +𝜇 =0 𝜕𝑢 𝜕𝑢 𝜕𝑢

stationarity conditions

Bryson, A. E. (1975). Applied Optimal Control: Optimization, Estimation and Control: CRC Press.

E. Aydin – Dynamic optimization using indirect methods

Escape 2017

13

Pontryagin’s Minimum Principle min 𝐻 𝑡 = 𝜆𝑇 𝐹 𝑥, 𝑢 + 𝜇𝑇 𝑆(𝑥)

𝑡𝑓 ,𝑢(𝑡)

Lagrange multipliers for path constraints

s.t. 𝜆𝑇

=

𝑥 = 𝐹 𝑥, 𝑢 ; 𝑥 0 = 𝑥0 ; 𝜕𝐻 − , 𝜕𝑥

𝜆𝑇

𝑡𝑓 =

𝜇𝑇 𝑆 = 0;

𝜕𝜙 𝜕𝑥 𝑡𝑓

+

update using

𝜕𝑇 𝑇 𝜐 ; 𝜕𝑥 𝑡𝑓

𝜐𝑇 𝑇 = 0

shooting & optimization: COSTLY!

Lagrange multipliers

𝜕𝐻(𝑡) 𝜕𝐹 𝜕𝑆 𝑇 𝑇 =𝜆 +𝜇 =0 𝜕𝑢 𝜕𝑢 𝜕𝑢

may not even converge!

Bryson, A. E. (1975). Applied Optimal Control: Optimization, Estimation and Control: CRC Press. Chachuat, B. (2007). Nonlinear and Dynamic Optimization: From Theory to Practice. Lecture Notes.

E. Aydin – Dynamic optimization using indirect methods

Escape 2017

14

Proposed Method To deal with path constraints: min 𝐻 𝑡 = 𝜆𝑇 𝐹 𝑥, 𝑢 + 𝜇𝑇 𝑆(𝑥)

𝑡𝑓 ,𝑢(𝑡)

Aydin, E., Bonvin, D., & Sundmacher, K. (2017). Dynamic optimization of constrained semi-batch processes using Pontryagin’s minimum principle—An effective quasi-Newton approach. Computers & Chemical Engineering, 99, 135-144.

E. Aydin – Dynamic optimization using indirect methods

Escape 2017

15

Proposed Method To deal with path constraints: min 𝐻 𝑡 = 𝜆𝑇 𝐹 𝑥, 𝑢 + 𝜇𝑇 𝑆(𝑥)

𝑡𝑓 ,𝑢(𝑡)

1) 𝜇 as penalty term that ensures feasibility! (instead of parametrizing & shooting for 𝜇)

Aydin, E., Bonvin, D., & Sundmacher, K. (2017). Dynamic optimization of constrained semi-batch processes using Pontryagin’s minimum principle—An effective quasi-Newton approach. Computers & Chemical Engineering, 99, 135-144.

E. Aydin – Dynamic optimization using indirect methods

Escape 2017

16

Proposed Method To deal with path constraints: min 𝐻 𝑡 = 𝜆𝑇 𝐹 𝑥, 𝑢 + 𝜇𝑇 𝑆(𝑥)

𝑡𝑓 ,𝑢(𝑡)

1) 𝜇 as penalty term that ensures feasibility! (instead of parametrizing & shooting for 𝜇) If feasible iteration => set 𝜇 = 0 ; 𝜐 = 0 else set 𝜇 = K ; 𝜐 = K

(penalty term)

Aydin, E., Bonvin, D., & Sundmacher, K. (2017). Dynamic optimization of constrained semi-batch processes using Pontryagin’s minimum principle—An effective quasi-Newton approach. Computers & Chemical Engineering, 99, 135-144.

E. Aydin – Dynamic optimization using indirect methods

Escape 2017

17

Proposed Method To deal with path constraints: min 𝐻 𝑡 = 𝜆𝑇 𝐹 𝑥, 𝑢 + 𝜇𝑇 𝑆 𝑥 𝑡𝑓 ,𝑢(𝑡)

1) 𝜇 as penalty term that ensures feasibility!

𝜇𝑇 𝑆 = 0

2) indirect adjoining! 𝑆 𝑥 : = 𝑆 (𝑛) 𝑥, 𝑢

time derivation until explicit in u

Aydin, E., Bonvin, D., & Sundmacher, K. (2017). Dynamic optimization of constrained semi-batch processes using Pontryagin’s minimum principle—An effective quasi-Newton approach. Computers & Chemical Engineering, 99, 135-144.

E. Aydin – Dynamic optimization using indirect methods

Escape 2017

18

Proposed Method To deal with path constraints: min 𝐻′ 𝑡 = 𝜆𝑇 𝐹 𝑥, 𝑢 + 𝜇𝑇 𝑆 (𝑛) 𝑥, 𝑢

𝑡𝑓 ,𝑢(𝑡)

1) 𝜇 as penalty term that ensures feasibility!

𝜇𝑇 𝑆 = 0

2) indirect adjoining! 𝑆 𝑥 : = 𝑆 (𝑛) 𝑥, 𝑢

Aydin, E., Bonvin, D., & Sundmacher, K. (2017). Dynamic optimization of constrained semi-batch processes using Pontryagin’s minimum principle—An effective quasi-Newton approach. Computers & Chemical Engineering, 99, 135-144.

E. Aydin – Dynamic optimization using indirect methods

Escape 2017

19

Proposed Method To deal with path constraints: min 𝐻′ 𝑡 = 𝜆𝑇 𝐹 𝑥, 𝑢 + 𝜇𝑇 𝑆 (𝑛) 𝑥, 𝑢

𝑡𝑓 ,𝑢(𝑡)

1) 𝜇 as penalty term that ensures feasibility!

𝜇𝑇 𝑆 = 0

2) indirect adjoining! 3) if infeasible iteration in terms of 𝑺 𝒙 => compute 𝒖 that makes 𝑆 (𝑛) 𝑥, 𝑢 =0 (enforce active path constraints)

Aydin, E., Bonvin, D., & Sundmacher, K. (2017). Dynamic optimization of constrained semi-batch processes using Pontryagin’s minimum principle—An effective quasi-Newton approach. Computers & Chemical Engineering, 99, 135-144.

E. Aydin – Dynamic optimization using indirect methods

Escape 2017

20

Proposed Method To illustrate: min 𝐻 𝑡 = 𝜆𝑇 𝐹 𝑥, 𝑢 + 𝜇𝑇 𝑆 𝑥

𝑡𝑓 ,𝑢(𝑡)

E. Aydin – Dynamic optimization using indirect methods

Escape 2017

21

Proposed Method To illustrate: min 𝐻′ 𝑡 = 𝜆𝑇 𝐹 𝑥, 𝑢 + 𝜇𝑇 𝑆 (𝑛) 𝑥, 𝑢

𝑡𝑓 ,𝑢(𝑡)

indirect adjoining

E. Aydin – Dynamic optimization using indirect methods

Escape 2017

22

Proposed Method To illustrate: min 𝐻′ 𝑡 = 𝜆𝑇 𝐹 𝑥, 𝑢 + 𝜇𝑇 𝑆 (𝑛) 𝑥, 𝑢

𝑡𝑓 ,𝑢(𝑡)

th

n iteration (infeasible)

E. Aydin – Dynamic optimization using indirect methods

Escape 2017

23

Proposed Method To illustrate: min 𝐻′ 𝑡 = 𝜆𝑇 𝐹 𝑥, 𝑢 + 𝜇𝑇 𝑆 (𝑛) 𝑥, 𝑢

𝑡𝑓 ,𝑢(𝑡)

th

n iteration (infeasible)

activate path constraint {𝑆 (𝑛) 𝑥, 𝑢 = 0}

E. Aydin – Dynamic optimization using indirect methods

Escape 2017

24

Proposed Method

• Original problem converted to an unconstrained optimization problem! • Solve using a Quasi-Newton algorithm

E. Aydin – Dynamic optimization using indirect methods

Escape 2017

25

Parsimonious Solution Model A solution arc can be: - either on a lower or upper bound (𝒖𝒎𝒊𝒏 or 𝒖𝒎𝒂𝒙 )

E. Aydin – Dynamic optimization using indirect methods

Escape 2017

26

Parsimonious Solution Model A solution arc can be: - either on a lower or upper bound (𝒖𝒎𝒊𝒏 or 𝒖𝒎𝒂𝒙 ) - on a path constraint (𝒖𝒑𝒂𝒕𝒉 ) , can be computed via system equations

E. Aydin – Dynamic optimization using indirect methods

Escape 2017

27

Parsimonious Solution Model A solution arc can be: - either on a lower or upper bound (𝒖𝒎𝒊𝒏 or 𝒖𝒎𝒂𝒙 ) - on a path constraint (𝒖𝒑𝒂𝒕𝒉 ) , can be computed via system equations - or inside the feasible region as a sensitivity-seeking arc (𝒖𝒔𝒆𝒏𝒔 )

E. Aydin – Dynamic optimization using indirect methods

Escape 2017

28

Parsimonious Solution Model A solution arc can be: - either on a lower or upper bound (𝒖𝒎𝒊𝒏 or 𝒖𝒎𝒂𝒙 ) - on a path constraint (𝒖𝒑𝒂𝒕𝒉 ) - or inside the feasible region as a sensitivity-seeking arc (𝒖𝒔𝒆𝒏𝒔 )

Fine shape of 𝒖𝒔𝒆𝒏𝒔 :

- hard to compute accurately

E. Aydin – Dynamic optimization using indirect methods

Escape 2017

29

Parsimonious Solution Model A solution arc can be: - either on a lower or upper bound (𝒖𝒎𝒊𝒏 or 𝒖𝒎𝒂𝒙 ) - on a path constraint (𝒖𝒑𝒂𝒕𝒉 ) - or inside the feasible region as a sensitivity-seeking arc (𝒖𝒔𝒆𝒏𝒔 )

Fine shape of 𝒖𝒔𝒆𝒏𝒔 :

- hard to compute accurately - often negligible effect on optimal cost! E. Aydin – Dynamic optimization using indirect methods

Escape 2017

30

Parsimonious Solution Model A solution arc can be: - either on a lower or upper bound (𝒖𝒎𝒊𝒏 or 𝒖𝒎𝒂𝒙 ) - on a path constraint (𝒖𝒑𝒂𝒕𝒉 ) - or inside the feasible region as a sensitivity-seeking arc (𝒖𝒔𝒆𝒏𝒔 )

Parsimonious parameterization

Fine shape of 𝒖𝒔𝒆𝒏𝒔 :

- hard to compute accurately

using prior solution - often negligible effect on optimal cost! E. Aydin – Dynamic optimization using indirect methods

Escape 2017

31

Parsimonious Solution Model Parsimonious parameterization of 3-arc solution : 𝑢𝑚𝑎𝑥

- 𝑢𝑠𝑒𝑛𝑠 - 𝑢𝑚𝑖𝑛

PMP : Standard parameterization min 𝐻 𝑡 = 𝜆𝑇 𝐹 𝑥, 𝑢 + 𝜇𝑇 𝑆(𝑥, 𝑢) 𝑢(𝑡)

s.t. 𝑥 = 𝐹 𝑥, 𝑢 ; 𝑥 0 = 𝑥0 ; 𝜕𝐻 𝜕𝜙 𝜕𝑇 𝜆𝑇 = − , 𝜆𝑇 𝑡𝑓 = + 𝜐𝑇 𝜕𝑥

𝜕𝑥 𝑡𝑓

𝜕𝑥 𝑡𝑓

;

𝜇𝑇 𝑆(𝑥, 𝑢) = 0; 𝜐 𝑇 𝑇(𝑥(𝑡𝑓 )) = 0 ; 𝜕𝐻(𝑡) 𝜕𝐹 𝑥, 𝑢 𝜕𝑆 𝑥, 𝑢 = 𝜆𝑇 + 𝜇𝑇 =0 𝜕𝑢 𝜕𝑢 𝜕𝑢

E. Aydin – Dynamic optimization using indirect methods

Escape 2017

32

Parsimonious Solution Model Parsimonious parameterization of 3-arc solution : 𝑢𝑚𝑎𝑥 PMP : Standard parameterization

PMP : Pars. parameterization 𝑚𝑖𝑛 𝐻 𝑡 = 𝜆𝑇 𝐹 𝑥, 𝜋 + 𝜇𝑇 𝑆(𝑥, 𝜋)

min 𝐻 𝑡 = 𝜆𝑇 𝐹 𝑥, 𝑢 + 𝜇𝑇 𝑆(𝑥, 𝑢)

𝝅

𝒖(𝑡)

s.t. 𝑥 = 𝐹 𝑥, 𝑢 ; 𝑥 0 = 𝑥0 ; 𝜕𝐻 𝜕𝜙 𝜕𝑇 𝜆𝑇 = − , 𝜆𝑇 𝑡𝑓 = + 𝜐𝑇 𝜕𝑥

𝜕𝑥 𝑡𝑓

- 𝑢𝑠𝑒𝑛𝑠 - 𝑢𝑚𝑖𝑛

s.t.

𝜕𝑥 𝑡𝑓

;

𝜇𝑇 𝑆(𝑥, 𝑢) = 0; 𝜐 𝑇 𝑇(𝑥(𝑡𝑓 )) = 0 ; 𝜕𝐻(𝑡) =0 𝜕𝑢

𝜆𝑇 = −

𝒙 = 𝑭 𝒙, 𝝅 ; 𝑥 0 = 𝑥0 ;

𝜕𝐻 , 𝜕𝑥

𝜕𝜙 𝜕𝑥 𝑡𝑓 𝑇

𝜆𝑇 𝑡𝑓 =

+ 𝜐𝑇

𝜕𝑇 ; 𝜕𝑥 𝑡𝑓

𝝁𝑻 𝑺(𝒙, 𝝅) = 𝟎; 𝜐 𝑇(𝑥(𝑡𝑓 )) = 0; 𝝏𝑯(𝒕) =𝟎 𝝏𝝅

𝑢(𝑡) ≈ 𝑈(𝜋)

E. Aydin – Dynamic optimization using indirect methods

Escape 2017

33

Parsimonious Solution Model Parsimonious parameterization of 3-arc solution : 𝑢𝑚𝑎𝑥

- 𝑢𝑠𝑒𝑛𝑠 - 𝑢𝑚𝑖𝑛

𝑢(𝑡) ≈ 𝑈(𝜋) 𝑢max 𝑈 𝜋 =

𝒖𝒔𝒆𝒏𝒔 𝒕 = 𝑢𝑚𝑎𝑥 + 𝑢min

𝑢𝑚𝑖𝑛 − 𝑢𝑚𝑎𝑥 (𝑡 − 𝑡1 ) 𝑡2 − 𝑡1

𝑖𝑓 0 ≤ 𝑡 < 𝑡1 ; 𝑖𝑓 𝑡1 ≤ 𝑡 < 𝑡2 ; 𝑖𝑓 𝑡2 ≤ 𝑡 < 𝑡𝑓

𝝅 = (𝒕𝟏 , 𝒕𝟐 )

E. Aydin – Dynamic optimization using indirect methods

Escape 2017

34

Parsimonious Solution Model Parsimonious parameterization of 3-arc solution : 𝑢𝑚𝑎𝑥

- 𝑢𝑠𝑒𝑛𝑠 - 𝑢𝑚𝑖𝑛

𝑢(𝑡) ≈ 𝑈(𝜋) 𝑢max 𝑈 𝜋 =

𝒖𝒔𝒆𝒏𝒔 𝒕 = 𝑢𝑚𝑎𝑥 + 𝑢min

𝑢𝑚𝑖𝑛 − 𝑢𝑚𝑎𝑥 (𝑡 − 𝑡1 ) 𝑡2 − 𝑡1

𝑖𝑓 0 ≤ 𝑡 < 𝑡1 ; 𝑖𝑓 𝑡1 ≤ 𝑡 < 𝑡2 ; 𝑖𝑓 𝑡2 ≤ 𝑡 < 𝑡𝑓

𝝅 = (𝒕𝟏 , 𝒕𝟐 )

Apply the same solution strategy!

E. Aydin – Dynamic optimization using indirect methods

Escape 2017

35

Outline •

Dynamic optimization & available methods



Proposed indirect–based parsimonious algorithm



Case Studies:

I.

Binary batch distillation column

II. Semi-batch hydroformylation reactor E. Aydin – Dynamic optimization using indirect methods

Escape 2017

36

Case Study : Binary Batch Distillation input: 𝒓 = L/V V, y3

V-L, y3

𝒎𝒂𝒙 𝑱 = 𝑫(𝒕𝒇 ) 𝒓(𝒕)

s.t.

L, y3

3

D, xD

• dynamic system equations, initial conditions

2

• physical constraints; 𝑡𝑓 = 3 [ℎ]

1

• input constraints:

0≤𝒓 𝒕 ≤1

• terminal purity constraints: 𝑥𝐷 𝑡𝑓 ≥ 0.8 𝑥B 𝑡𝑓 ≤ 0.2

B, xB

Aydin, E., Bonvin, D., & Sundmacher, K. (2017). Dynamic optimization of constrained semi-batch processes using Pontryagin’s minimum principle—An effective quasi-Newton approach. Computers & Chemical Engineering, 99, 135-144.

E. Aydin – Dynamic optimization using indirect methods

Escape 2017

37

Case Study : Binary Batch Distillation Distillate, D (kmol)

Fully-parameterized solution: N=500, direct simultaneous Reflux ratio, r

1 0.8 0.6 0.4 0.2 Full par. DS 0

0

1

2

50

30 20 10 0

3

J=40.31

40

0

1

0.88 0.86 0.84 0.82 0.8

0

1

3

2

3

Time (h)

2

3

Bottoms composition, xB

Distillate composition, xD

Time (h)

2

0.4 0.35 0.3 0.25 0.2

0

Time (h)

1

Time (h)

Aydin, E., Bonvin, D., & Sundmacher, K. (2017). Dynamic optimization of constrained semi-batch processes using Pontryagin’s minimum principle—An effective quasi-Newton approach. Computers & Chemical Engineering, 99, 135-144.

E. Aydin – Dynamic optimization using indirect methods

Escape 2017

38

Case Study : Binary Batch Distillation Distillate, D (kmol)

Fully-parameterized solution: N=500, direct simultaneous Reflux ratio, r

1 0.8 0.6

𝒓𝒎𝒂𝒙

0.4

𝒓𝒔𝒆𝒏𝒔

𝒓𝒎𝒊𝒏

0.2 Full par. DS 0

0

1

2

50

30 20 10 0

3

J=40.31

40

0

1

0.88 0.86 0.84 0.82 0.8

0

1

3

2

3

Time (h)

2

3

Bottoms composition, xB

Distillate composition, xD

Time (h)

2

0.4 0.35 0.3 0.25 0.2

0

Time (h)

1

Time (h)

Aydin, E., Bonvin, D., & Sundmacher, K. (2017). Dynamic optimization of constrained semi-batch processes using Pontryagin’s minimum principle—An effective quasi-Newton approach. Computers & Chemical Engineering, 99, 135-144.

E. Aydin – Dynamic optimization using indirect methods

Escape 2017

39

Case Study : Binary Batch Distillation 𝜋 = (𝑡1 , 𝑡2 , 𝑟𝑏 )𝑇

Distillate, D (kmol)

Parsimonious solution: constant 𝑟𝑠𝑒𝑛𝑠 (t) = rb Reflux ratio, r

1 0.8 0.6 0.4 Full par. DS Pars. PMP constant rsens

0.2 0

0

1

2

50

30 20 10 0

3

J=40.31 J=40.18

40

0

1

0.88 0.86 0.84 0.82 0.8

0

1

3

2

3

Time (h)

2

3

Bottoms composition, xB

Distillate composition, xD

Time (h)

2

0.4 0.35 0.3 0.25 0.2 0

Time (h)

E. Aydin – Dynamic optimization using indirect methods

1

Time (h)

Escape 2017

40

Case Study : Binary Batch Distillation 𝜋 = (𝑡1 , 𝑡2 , 𝑟𝑏 )𝑇

Reflux ratio, r

1

Distillate, D (kmol)

Parsimonious solution: constant 𝑟𝑠𝑒𝑛𝑠 (t) = rb 𝑟𝑏

0.8

𝑡2

𝑡1

0.6 0.4

Full par. DS Pars. PMP constant rsens

0.2 0

0

1

2

50

30 20 10 0

3

J=40.31 J=40.18

40

0

1

0.88 0.86 0.84 0.82 0.8

0

1

3

2

3

Time (h)

2

3

Bottoms composition, xB

Distillate composition, xD

Time (h)

2

0.4 0.35 0.3 0.25 0.2 0

Time (h)

E. Aydin – Dynamic optimization using indirect methods

1

Time (h)

Escape 2017

41

Case Study : Binary Batch Distillation Parsimonious solution: linear 𝑟𝑠𝑒𝑛𝑠 𝑡 = 𝑟𝑏1 +

E. Aydin – Dynamic optimization using indirect methods

𝑟𝑏2−𝑟𝑏1 (𝑡 𝑡2 −𝑡1

Escape 2017

− 𝑡1 )

𝜋 = (𝑡1 , 𝑡2 , 𝑟𝑏1 , 𝑟𝑏2 )𝑇

42

Case Study : Binary Batch Distillation Distillate, D (kmol)

Parsimonious solution: linear 𝑟𝑠𝑒𝑛𝑠 𝑡 = 𝑟𝑏1 + Reflux ratio, r

1 0.8 0.6 0.4

Full par. DS Pars. PMP constant r sens

0.2 0

Pars. PMP linear r sens

0

1

2

𝑟𝑏2−𝑟𝑏1 (𝑡 𝑡2 −𝑡1

J=40.31

40

J=40.18 J=40.25

30 20 10 0

1

0.88 0.86 0.84 0.82

0

1

2

3

2

3

Time (h)

2

3

Bottoms composition, xB

Distillate composition, xD

Time (h)

0.8

𝜋 = (𝑡1 , 𝑡2 , 𝑟𝑏1 , 𝑟𝑏2 )𝑇

50

0

3

− 𝑡1 )

0.4 0.35 0.3 0.25 0.2 0

Time (h)

E. Aydin – Dynamic optimization using indirect methods

1

Time (h)

Escape 2017

43

Case Study : Binary Batch Distillation

Reflux ratio, r

1

𝑟𝑏2

0.8

𝑡1

0.6 0.4

Full par. DS Pars. PMP constant r sens

0.2 0

𝑡2

𝑟𝑏1 Pars. PMP linear r sens

0

1

2

Distillate, D (kmol)

Parsimonious solution: linear 𝑟𝑠𝑒𝑛𝑠 𝑡 = 𝑟𝑏1 +

𝑟𝑏2−𝑟𝑏1 (𝑡 𝑡2 −𝑡1

J=40.31

40

J=40.18 J=40.25

30 20 10 0

1

0.88 0.86 0.84 0.82

0

1

2

3

2

3

Time (h)

2

3

Bottoms composition, xB

Distillate composition, xD

Time (h)

0.8

𝜋 = (𝑡1 , 𝑡2 , 𝑟𝑏1 , 𝑟𝑏2 )𝑇

50

0

3

− 𝑡1 )

0.4 0.35 0.3 0.25 0.2 0

Time (h)

1

Time (h)

0.15 % gap E. Aydin – Dynamic optimization using indirect methods

Escape 2017

44

Case Study : Binary Batch Distillation Full par. DS Pars. PMP constant rsens Pars. PMP linear rsens

CPU Time [s]

1

10

0

10

0

50

100

150

200

250

300

350

400

450

500

Discretization Level

Full par. DS:

40.31 kmol

Pars. PMP : constant 𝑟𝑠𝑒𝑛𝑠

40.18 kmol

Pars. PMP : linear 𝑟𝑠𝑒𝑛𝑠

40.25 kmol

E. Aydin – Dynamic optimization using indirect methods

Escape 2017

45

Outline •

Dynamic optimization & available methods



Proposed indirect–based parsimonious algorithm



Case Studies:

I.

Binary batch distillation column

II. Semi-batch hydroformylation reactor E. Aydin – Dynamic optimization using indirect methods

Escape 2017

46

Case Study : Hydroformylation 𝒖 𝒕 (𝑠𝑦𝑛𝑔𝑎𝑠)

𝑻(𝒕) 𝒎𝒂𝒙 𝑱 = 𝒄𝒏𝒄𝟏𝟑𝒂𝒍 (𝒕𝒇 )

𝒖 𝒕 ,𝑻(𝒕)

s.t. • dynamic system equations, balances, physical constraints, 𝑡𝑓 = 80 [𝑚𝑖𝑛] • gas-liquid mass-transfer equations • input constraints:

0≤𝒖 𝒕 ;

368.15 K ≤ 𝑻 𝒕 ≤ 388.15 K

• total partial pressure constraint: 1 𝑏𝑎𝑟 ≤ 𝒑𝒕𝒐𝒕𝒂𝒍 (𝒕) ≤ 20 𝑏𝑎𝑟 - Hentschel, B., Kiedorf, G., Gerlach, M., Hamel, C., Seidel-Morgenstern, A., Freund, H., & K. Sundmacher. (2015). Model-based identification and experimental validation of the optimal reaction route for the Hydroformylation of 1-dodecene. Industrial & Engineering Chemistry Research, 54, 1755-1765. - Aydin, E., Bonvin, D., & Sundmacher, K. (2017). Dynamic optimization of constrained semi-batch processes using Pontryagin’s minimum principle—An effective quasiNewton approach. Computers & Chemical Engineering, 99, 135-144.

E. Aydin – Dynamic optimization using indirect methods

Escape 2017

47

Case Study : Hydroformylation 390

T (K)

385 380 375 370 365 0

10

20

30

40

50

60

70

80

u (mol/min)

4 Full par. PMP, J=0.595 mol/L Full par. DS , J=0.596 mol/L

3 2 1 0 0

10

20

30

E. Aydin – Dynamic optimization using indirect methods

40 Time (h)

50

Escape 2017

60

70

80

48

Case Study : Hydroformylation 390

T (K)

385 380 375

𝑻𝒎𝒊𝒏 - 𝑻𝒔𝒆𝒏𝒔 - 𝑻𝒎𝒂𝒙

370 365 0

10

20

30

40

50

60

70

80

u (mol/min)

4 Full par. PMP, J=0.595 mol/L Full par. DS , J=0.596 mol/L

3 2

𝒖𝒑𝒂𝒕𝒉

1 0 0

10

20

30

E. Aydin – Dynamic optimization using indirect methods

40 Time (h)

50

Escape 2017

60

70

80

49

Case Study : Hydroformylation 390

T (K)

385 380 375

𝑻𝒎𝒊𝒏 - 𝑻𝒔𝒆𝒏𝒔 - 𝑻𝒎𝒂𝒙

370 365 0

10

20

30

40

50

60

70

80

u (mol/min)

4 Full par. PMP, J=0.595 mol/L Full par. DS , J=0.596 mol/L

3 2

𝒖𝒑𝒂𝒕𝒉

1 0 0

10

20

30

𝒖 = 𝒖 𝒑𝒂𝒕𝒉

40 Time (h)

50

60

70

80

𝝅 = (𝒕𝟏 , 𝒕𝟐 )𝑻 (via system equations)

E. Aydin – Dynamic optimization using indirect methods

Escape 2017

50

Case Study : Hydroformylation 390

T (K)

385

𝑡2

380 375

𝑡1

370 365 0

10

20

30

40

50

60

70

80

u (mol/min)

4 3

Pars. par. PMP, J=0.594 mol/L Full par. PMP, J=0.595 mol/L Full par. DS , J=0.596 mol/L

2 1 0 0

10

20

30

𝒖 = 𝒖 𝒑𝒂𝒕𝒉

40 Time (h)

50

𝝅 = (𝒕𝟏 , 𝒕𝟐 )𝑻 (via system equations)

E. Aydin – Dynamic optimization using indirect methods

Escape 2017

60

70

80

0.33 % gap 51

Case Study : Hydroformylation 70 Full par. DS Full par. PMP 60

CPU Time [s]

50

40

30

20

10

0

100

150

200

250 300 Discretization Level

E. Aydin – Dynamic optimization using indirect methods

350

Escape 2017

400

450

500

52

Case Study : Hydroformylation 70

60

Full par. DS Full par. PMP Pars. par. PMP

CPU Time [s]

50

40

30

20

10

0

100

150

200

250 300 Discretization Level

E. Aydin – Dynamic optimization using indirect methods

350

Escape 2017

400

450

500

53

Conclusions and Outlook • An

alternative

PMP-based

parsimonious

algorithm

is

proposed for solving constrained dynamic optimization of semi-batch processes.

E. Aydin – Dynamic optimization using indirect methods

Escape 2017

54

Conclusions and Outlook • An

alternative

PMP-based

parsimonious

algorithm

is

proposed for solving constrained dynamic optimization of semi-batch processes. • The method requires a prior solution.

E. Aydin – Dynamic optimization using indirect methods

Escape 2017

55

Conclusions and Outlook • An

alternative

PMP-based

parsimonious

algorithm

is

proposed for solving constrained dynamic optimization of semi-batch processes. • The method requires a prior solution. • Drastic computational reduction is observed through the use of parsimonious models.

E. Aydin – Dynamic optimization using indirect methods

Escape 2017

56

Conclusions and Outlook • An

alternative

PMP-based

parsimonious

algorithm

is

proposed for solving constrained dynamic optimization of semi-batch processes. • The method requires a prior solution. • Drastic computational reduction is observed through the use of parsimonious models. => can be extended to real-time model-based control.

E. Aydin – Dynamic optimization using indirect methods

Escape 2017

57

Conclusions and Outlook => can be extended to real-time model-based control 4

Standard sh-NMPC Parsimonious sh-NMPC

3.5

CPU time [s]

3

2.5

2

1.5

1

0.5

0

0

10

20

30

40

50

60

70

Time (min) Aydin, E., Bonvin, D., & Sundmacher, K. Fast NMPC of semi-batch processes via simplified solution modelsThe parsimonious shrinking-horizon NMPC, Journal of Process Control. Under review. E. Aydin – Dynamic optimization using indirect methods

Escape 2017

58

Conclusions and Outlook • An

alternative

PMP-based

parsimonious

algorithm

is

proposed for solving constrained dynamic optimization of semi-batch processes. • The method requires a prior solution. • Drastic computational reduction is observed through the use of parsimonious models. => can be extended to real-time model-based control Aydin, E., Bonvin, D., & Sundmacher, K. Fast NMPC of semi-batch processes via simplified solution modelsThe parsimonious shrinking-horizon NMPC, Journal of Process Control. Under review.

E. Aydin – Dynamic optimization using indirect methods

Escape 2017

59

Suggest Documents