Expectation-Maximization Algorithm in Image ... - Google Sites

0 downloads 210 Views 413KB Size Report
Mar 15, 2007 - Specification. Estimate. Maximize. Gaussian. E-Step. M-Step. Results. Reference. Expectation-Maximization
EM X IE Introduction Overview Applications

Specification Estimate Maximize

Gaussian E-Step M-Step

Expectation-Maximization Algorithm in Image Segmentation

Results Reference

Shuisheng Xie

March 15, 2007

EM

Overview

X IE Introduction Overview Applications

Specification Estimate Maximize

Gaussian E-Step M-Step

Results Reference

Finding maximum likelihood estimates of parameters in probabilistic models, where the model depends on unobserved latent variables. Two major steps: E step: Computes an expectation of the likelihood by including the latent variables as if they were observed. M step: Computes the maximum likelihood estimates of the parameters by maximizing the expected likelihood found on the E step.

EM

Applications of E-M Algorithm

X IE Introduction Overview Applications

Specification Estimate Maximize

Gaussian E-Step M-Step

Results Reference

Machine Learning Computer Vision and Image Processing Psychometrics Portfolio

EM

Specification of the EM Procedure

X IE Introduction Overview Applications

Definition of the data 1

Y:Incomplete data consisting of values of observable variable

2

X:Missing data

3

(X,Y): Complete data

Specification Estimate Maximize

Gaussian E-Step M-Step

Results Reference

Definite Integral 1

Estimate the unobservable data

2

Maximize expected log-likelihood for the complete dataset

EM X IE Introduction Overview Applications

Specification Estimate Maximize

Gaussian E-Step M-Step

Results Reference

Estimate the unobservable data p(y|x, θ)p(x|θ) p(y, x|θ) =R p(y|θ) p(y|x, θ)p(x|θ)dx For the conditional distribution of the missing data given the observed: the observation likelihood given the unobservable data p(y|x, θ); the probability of the unobservable data p(x|θ).

p(x|y, θ) =

EM X IE

Maximize expected log-likelihood for the complete dataset

Introduction Overview Applications

Specification Estimate Maximize

Gaussian E-Step M-Step

Results Reference

Iteratively improve an initial estimate θ0 and construct new estimates θ1 , . . . , θn , . . . . i h θn+1 = arg max Ex log p (y, x | θ) y θ

Log-likelihood is often used instead of true likelihood. θn+1 : The value that maximizes (M) the conditional expectation (E) of the complete data log-likelihood given the observed variables under the previous parameter value.

EM

Mixture Gaussian

X IE Introduction Overview Applications

Specification Estimate Maximize

Gaussian E-Step M-Step

Results Reference

The samples y1 , . . . , ym , are drawn from the gaussians x1 , . . . , xn P(y|xi , θ) = N (µi , σ i) =  1 −1/2 T −1 −l/2 (2π) |σi | exp − (y − µi ) σi (y − µi ) 2 The model you are trying to estimate: θ = {µ1 , . . . , µn , σ1 , . . . , σn , P(x1 ), . . . , P(xn )}

EM

E-Step

X IE Introduction Overview Applications

Specification Estimate Maximize

Gaussian E-Step M-Step

Results Reference

Estimation for unobserved event (which Gaussian is used),conditioned on the observation, using the values from the last maximization step: P(xi |yj , θt ) p(xi , yj |θt ) = p(yj |θt ) p(yj |xi , θt )P(xi |θt ) = Pn k=1 p(yj |xk , θt )P(xk |θt )

EM

M-Step

X IE Introduction Overview Applications

Specification Estimate Maximize

 Q(θ) = Ex ln

m Y

 p (yj , x|θ) yj 

j=1

Gaussian E-Step M-Step

Results

  m X = Ex  ln p (yj , x|θ) yj  j=1

Reference

=

=

m X

i h Ex ln p (yj , x|θ) yj

j=1 m X n X j=1 i=1

P (xi |yj , θt ) ln p (xi , yj |θ)

EM X IE

µi , σi , P(xi |θ) Pm

Introduction Overview Applications

1

j=1 µi = Pm

j=1 P(xi |yj , θt )

Pm

Specification Estimate Maximize

2

σi =

3

P(xi |θ)

Gaussian E-Step M-Step

Results Reference

P(xi |yj , θt )yj

j=1 P(xi |yj , θt )(yj − µi )(yj − Pm j=1 P(xi |yj , θt ) Pm j=1 P(xi |yj , θt ) = Pn Pm k=1 j=1 P(xk |yj , θt )

µi )T

EM X IE Introduction Overview Applications

Specification Estimate Maximize

Gaussian E-Step M-Step

Results Reference

Experimental Results

EM X IE Introduction Overview Applications

Specification Estimate Maximize

Gaussian E-Step M-Step

Results Reference

Experimental Results

EM X IE Introduction Overview Applications

Specification Estimate Maximize

Gaussian E-Step M-Step

Results Reference

Experimental Results

EM X IE Introduction Overview Applications

Specification Estimate Maximize

Gaussian E-Step M-Step

Results Reference

Experimental Results

EM X IE Introduction Overview Applications

Specification Estimate Maximize

Gaussian E-Step M-Step

Results Reference

Experimental Results

EM X IE Introduction Overview Applications

Specification Estimate Maximize

Gaussian E-Step M-Step

Results Reference

Experimental Results

EM

Reference

X IE Introduction Overview Applications

Specification Estimate Maximize

Gaussian E-Step M-Step

Results Reference

http://en.wikipedia.org/wiki/Expectationmaximization algorithm Xenophon Papademetris, Pavel Shkarin, Lawrence H. Staib, Kevin L. Behar: Regional Whole Body Fat Quantification in Mice. IPMI 2005: 369-380

EM X IE Introduction Overview Applications

Specification Estimate Maximize

Gaussian E-Step M-Step

Results Reference

Suggest Documents