In this article we present our results for computation of unsteady viscous
transonic flows past sta- tionary airfoils at various angles of attack. S'abilized
finite ...
FINITE ELEMENT COMPUTATION OF UNSTEADY VISCOUS TRANSONIC FLOWS PAST AIRFOILS S. Mittal Departmentof AerospaceEngineermg Indian .Instituteof Technology Kanpur, UP 208016, INDIA Abstract
In this article we present our results for computation of unsteady viscous transonic flows past stationary airfoils at various angles of attack. S'abilized finite element methods are employedto solve the co~pressible Navier-Stokes equations in their conservation law form. The non-linear equations resulting from the finite element discretizations are solvedusing the GeneralizedMinimal RESidual (GJvIRES) technique. Interesting flow P!lttems involving interactions betweenshock waves, boundary layers and shear layers are observedfor all the cases. It is observedthat the unsteadinessin the wake and the strength of the shocks.involved increase with an increase in the angle of attack. Keywords:
1
Finite-elements, Transonic, Viscous, Airtoil, Vortex-shedding.
Introd uction
Viscous transonic flows are associated with complex interactions between the boundary/shear layers and shock/expansion waves. In the transonic regime, the flows are quite sensitive to the freestream Reynolds and Mach numbers; the boundary/shear layer behaviour mainly depends on the Reynoldsnumber while the shock/e:Xpansionwavebehaviour .dependsmainly on the Mach number [1, 2]. A number of numerical studies have been devoted to the analysesof steady inviscid transonic flows [3, 4, .5, 6, 7, 8]. Fewer studies have been conducted.for unsteady, viscous flows [9, 10, 11, 12]. In this article, we present our results for the computation of unsteady viscous transonic flows past airfoils .at vaciousanglesof attack. We begin by reviewing the governing equations in Section 2. The equations are written in the conservation law form. Tire ~tabilized variational formulation of these equations in terms of the conservation variables is presented in Section 3. The SUPG (streamline-upwind/Petrov-Galerkin)' stabilization technique is employed to stabilize our computations against spurious numerical oscillations due to advection dominated flows. The SUPG technique was first introduced by Hughes and Brooks [13] for the advection-diffusion equation and for incompressibleflows. It was introduced in the context of inviscid compressibleflows by Tezduyar and Hughes [1, 14] and Hughes and Tezduyar [3]. In addition to the SUPG stabilizations we supplement our formulation with a shock-capturing term to provide stability of the computations in the presenceof discontinuities and large gradients in the flow. This idea, in the context of conservation variables, was demc;>nstrated by Le Beau and Tezduyar [6]. In the current work we employ the sameshock capturing operator as the one by Le Beau and Tezduyar [6] but with a modified coefficient to account for the unsteadinessin the flow. The effect of this modified term is demonstrated in [12] via a numerical example. In Section 4 we present our results for computation of flows past airfoils at various angles'.ofattack..
2
The -Governing Equations
L~t n c fln.d and (0, T) be the spatial and t'emporal domains respectively,where'nsd is the number of spacedimensions,and let r denote the boundary of n, The spatial and temporal coordinates are Proceedings of 48th AGM, AeSl, Jan
- Feb
1997, 771/nNananthapuram
(f:l)
11 ¥n¥~.L+ ~b t~.L
~ 1~
I~.L 0
(~1)
'AlaA!~:)adsal
'alV ,~ puv '.!I puv' 'salqv!lvA
(d + ~d)'n d~'.9+ 'Ind'n dl'.9 + Tnd'n . d'n
='.!!
w peuyap SlO~:>aAxny SnO:>h:!ApUV laln3 aq1 UO!~VAlaSUO:>JO lO~:>aA aq~ S! '(OJd"&nd'Tnd'd) = fl alaq.\\
-
-
'(1)
UO!~1!AJaSUO:>aq~ U! Ua~~!JA\ aq U1!:> (£) pU1! '(~)
0 = -'z(J - 'ze + 7e
(II)
'~.L'0) .lO1u uo
!.j(}
':Ie
(nT)
"
fiR
suo!~1!nba sa}{o~S-Ja'A1!N ajQ!s,,3Jdwo:>
sajq~!JI allL
.lC/{1 - 1...)
'V'I
~U!A\OlloJ rl'l:1A
UO!~~laJ
- ~
aq~ o~ ~U!pJo:>:>1? .{~!S(J:>S!A p!ny
aq~ O~ .{~!A!t;)npUO;)
~vaq aq~ sa~t?I()J'pay!:>ads ;lq o~ pawnsS1I '(.Ad) Jaqwnu l~put?Jd '~Ut?~SUO:> S1I~It?ap! ~qt III 'lI aJ;JqA\ I-A.. '-=9
(1:\
~H UO!~1!IaJ ~U!A\OIIoJ {1!UJa~U!
aq~ O~ pa~1!IaJ
aJn~1!Jadwa~
aq.L
'aJn~1!J3dw3~aq~
(8)
S!9
PU1! r.~!h!~:>npUo:>
a\{~ .OAxng ~~aq ()qj,
tlfnll~-3=~ I '~d(I - A.-)= d
(9)
seJ:.~!:>°la" pu~ S~UI ~jun Jed .('F.l3UaI~'O~ I1!ula~u! aq1 S! ~ pu~ s~wq J9!:)3ds JO O!'Vla'{~ S! A.-alaqA\
aq, O~pa~Vlal S! ~vq~ SseUl ~!un lad ~laua
Jo uo!~tlnba
;)q~ 'SdStlj] \tli)PJ .l°d
WWJ ItI!;)i)ds aT./~sawnsse a~v~s aT./~tlJA SdlqtlJ.l'eA .la1{~o aq1 01 ~~[8.1 SJ arnssa.ld
O;)~tI~SJo uo!~tlnba
(g)
= '(
orl!;.~
Aq P;)~tlI;)J ;)JtI '( PU1! rl ~tlq~ pawnsSti SJ ~I °s~uaJ;)YJaoJ A~JSOJSJAaq1 aJ1?r pU~ rl ;)J;)1{M
(f}
'I(n
+ (.L(n~)+ (n~))rl
' ~)'(
= .L
&'Rp3uy;>p S! JOSU"+ ssaJ+s SnOOS!AaqJ. 'AI;JA!+:ladS3J 'JOf:l9A xnH +~3q 3't~ pw 'S~W +!1in J3d A~J;)U:> 111+0+aq+ 'JOSua+ ssaJ+S snO:lS!A '~rn8S;JJd 'A+!:l°laA 'A+!SV~P a\[t ~.111b pat? '~ . J. 'I! 'n 'If al;lH
'(.L'o)1ofU!IO
(1)
'(.r'O) .- -. ",of- ii- uo
(t )
0~
T. ~A - d ~A + (nnd ...
-
~e ) . ~A + (nd)(}
oo::(nd)'6.+.1e
01111 'UilOJ UO!~~A10lstIO:>U! 'A\og p!ny a1{~ ~U!U1aAO~ suo!~l1nba sa~O~S-la!A1!N atfj, ,'7 PU11:t: Aq pa~ouap
11(!r(~11i, If" ;\1111Tik 1I.r(~t.h(! cornpoftcnts In f.iI(! q";1.-;i-lhl(~1I.r forlll,
equat.ioIl
iJU
o(the
iJU
-+A
iJt
'
fJXi
velocity,
(11) is written a
(
K-
heat flux, and viscous stress teusor, respectiv~ly.
11..,
0
fJU'
fJXi
"
aXj
I
..,I.,.,.c """.:
on {} J,
14]
O,T:
= lJFi ""ijij'
Ai
iNt.h(~Ellh~r.J;t(:obiallMatrix, and Kij is the diffusivity matrix satisfying
au
Kij- aXi ::: Ei.
(16
COrr(~HpOllUin!?; to cqlliltion ( 14), the following boundary and initial conditions are chosen U =g n. E = h U(x,O) = Uo
on rg for (O,T), on rh for (0, T), on no.
(17) (18) (19)
Sul>H(:r4)t. !I refcrH to Diri(~hlct boundary conditions whilc the subscript h refers to the Neumann l>0IlIlu1lry(:OIlIlitionH.Thc specification of these conditions for the flow past an ainoil is described in S(,(~t.i(1Il
3
-I.
Finite Element
i'ormulation
Cmlsil!(,r 1t finit.(~ (,lclllcnt. rlis~ U! I!°Jl!~ u~ ~ggd '¥'°Id :1 aln~jd
~'I
.
.
~.
1'1
-I f78:
0
~b
0= ~
0 = 1:Ii
T
H
v
0
gb
0
0 = Zn
~11,
Iff
.aW!1ado
;:
JO ;)'~nU!Tll 1 AI;>11!W!xOJdd1! sa){t!1 da1s";)w!~ q:>1!a 'UOnTl1SJlJOh\99~/tOg~ lV7~6~a 1!~O .s1InsaJ aq1 Jo A;)~JT\:):)1~-;>Wn;>Jnsua °1 p;>sn S! W.O Jo d;>1Saw!~ Y .u!TIwop aJnua aq1 U! sUOmpU03 wTlaJ1S-aaJ} q1!h\ P;)'~~!~!TI! o}J1~SUOn1!1ndwoJ aq.L "I ;>ro~!d aq1 U! Uh\oqs STIpaq!JJsaJd aJ1! sUOmpU03 AJ1!pUnoq aq~ "qs;>w S!q~ ~u!sn p;>1ndw03 ;>JTI001 PUTI oS JI:>TI11T1 Jo saI~U1! 1T1Sh\OId "sapou tIt
'~~
pTI~ S1TIO}T!lO}IO} I~J;)11!I!Jp11nb ~£1 '~~ Jo S1S!SU03qsaw S!q.L l!oJJ!TI aq1 Jo 1U!od pJoq3-P!W aq1 WOJJ 'q;>Tla 'A~h\~ sq~~IIO}I pJoqJ ~1 ;)Jl1 sa!J1!punoq Jah\oI PUTI Jaddn ;>q1 'aSTI3 S!q1 uI l!oJJ!TI aq1 01 asoI3 auo 1SJY i>q1 01 I1~;)nuO}P!S! q:)!qh\ P;)Aoldwa
STlh\ qsaw pu03as TI 'aJoJaJaq.L
"a1T1nbap1!u! S! 'UOn3aJ!p h\°{J-SSOJ3
;>q1 U! 'U!1~UIOP 1UO}sO}Jd ;)q1 Jo aZ!s aq1 11!q1 1IaJ S! 1! 'SaSTIaJ3U! JPTl111!Jo aI~ul1 aq1 sy .og pUT! o~ '00 ;);11>. JI:>1~1'~1! Jo S;)I5iU1~O}q~TIO}qh\sa&"RJ;)q1 JoJ Sh\°{J a1ndwoJ 01 pasn S! qS;)W S!q.L l!oJ:tre aq1 Jo 1U!od pJoqJ-P!T!l O}q101 ~:)O}dso}J q~!h\ 'q:>11;)'Al1h\1!sq~u;>1 pJOq3 g~"t aJ1! Sa!Jl1punoq Jah\ol PUTI Jaddn aq1 al!1:Ih\ 'AI;>An:)O}df;O}J'sq15iTIO}I-P,loq:) qwnu
SPIOUA;)"U;>q.L "h\°{J gS"O 'l/3VW TI U! pa:>1!Id S! I!oJJ!TI ~100 Y:JYN "~I..'O U! saSTI3aq1 lITI JoJ JaqwnN
I1pUTlJd aq.L "sJauOmpuo:JaJd
Y
J11UO~l1!P
-JPolq PUl1 I1!TIolll1!P q11h\ UO!~3UTlrTIO:)U! [91] anb!uq;>a1 (S:ilH W D) J11np!sa'H J11W!U!W paz!J11~auaD ;>q1 llu!sn P;)AIOS ;)J1! suo!~Tlnbi> h\0(J i>q1 JO UO!~l1ZnaJ3S!p 1uawala-a1!uy aq1 WOJJ ~U!1InsaJ sWa1sAs uo!~l1nhO} J~o}U!I-TIOUi>q.L "[~1 '11] STlli>lqOJd'JlJ1!ut:>uaq SnO!J1!Auo pa1sa1 u~q A~aJJ11 STlq poq1aw aq.L ".J.nduv)[ .II I 111SUOn1!1S-JlJOh\lV7~fi~a TIO1no pa!JJ1!J aJ1! aI3nJ1! S!q1 U! pa~JodaJ SUO!~111ndw03 aq1 lIY
SUO!':J.~Inm!s re:>!.Iamn /'tJ Ir
bolllldary layer thil:kens sufficicntl~' enough to l'auHl' till' ttO\V to l'OllHtrui rl'Hultilll!; ill t hI' liJrlllatilm of II. weak oblique shock. Tile int.eraction bl~t\vl~(~nth(~ bO\lIluar~' la~'l'r illlU tilt' Hho('k \vav(' rPHuitH in the separation of flow and one can observe the forlnation of a HiI(~arlaypr UO\VIIHtrPillll of I;ilp Hilo(~k. Another shock is forllled further downstrealll that colllbineswith the Hhock allu PXI>1tIlHum WaV(~H It)rnl(~U upstream resulting in a Ill.lIlbda shock. In the wake regioll two kindH of flow illHtability 1Il(~I~halliHIIlH are active. One is the Kelvin-Helmoltz instability. n.~sociat.cdwith thc Hhpar "ty(~rH. allu til(~ oth(~r is the interaction between the shear layer and the shock wave that iH alHo r(~HpOilHibll~for trmIHOlll(: bllffeting, Our flow patterns colllpare quite well with the colllputatiOilltl r(~Hult.Hl:pport.pu ill [9] .~nu with the experimental results in (17]. It must be pointed out that t.hc laboratory (~xpprunPllt.H(1.7] were carried out at a much larger Reynolds nulllber. Figure 7 HhowH t.hl~ tilll(~ iliHt.oriPHof th(~ lift. and drag coefficients for this computation. The Strouhalmnnber l:orrl~Hponuillg t.o t.iI(~lift. (~o(,tfil:icllt. variation is 1.58. It can be observed that the drag coefficient oscillat.(~sat twi(:(~ th(' frcqupn(~y of thp lift coefficient. 'This is consistent with the observation that the vortices are Hh(~ufrom both. th(~ upp('r and the lower surfaces of the airfoil. SQlutions for flows at angles of attack 2°, 5° and 8° 10° are showlI in Figures 3- 7, FrOin th('HC figi.lr~s it can be observed that as the angle of attack increases, the unsteaduless of the flow in the wake also incre~s, the lattlbda shock becomes stronger and, as expected, encompn.'iH('Sa larg(~r i'(~gion in the flow. At largeiangles of attack, the flow at the upper surface of t.hcairfoil H('parll.tesquit.(~(~los(, to the leading edge of the airfoil while the flow remains attatched on tilc lowl~r Hlmal:e. Th(, vort.-,x ~h~ddi~g takes place aft of the trailing edge of the airfoil as a result of t.h(~illt('r,~(:t.iOlI b(~t.wc(~1I t.h(, ",c, shock wave !1.ndthe shear layer.
5
Conclusions
Results have been presented for the computation of unsteady, laminar, viscous transomc flows pit.o;t stationary airfoils at various anglesof attack. The computations involve long-time integratioll ()f the Navier-Stokesequations and demonstrate that the boundary conditions utilized are qmte ro'bust. The results show interesting flow patterns and a complex interaction between the boundary/shci~r liLycrs and shock/expansionwaves. The unsteadinessin the flow increaseswith an. increasein the aIlgle of attack. -
6
Acknow ledgment
Partial support for thjs work has come from the Aeronautical Dev(!loprncnt A~cncy, lll'g;>q.'3nH °m°.L nI 'uoJsnJ}Jp PUJ!t\SSo.tJon tj~J!t\ alliatjJS pnJA\dn lunoJsn,uuJp-J'IIl\lli \' 'S){oo.t[l .N'V pnu sJtj.'anH '11'{".L
[£11
'9661 '6Ut,LJJUtO'u3 puv S;)tUVI/,IJ/V PJ~lddV U!, SPOI/JJ/V .LJJ'l/.Il'IILO;) 0:1 p;J~'~Jwqns
'SA\OlJ ;JlqJssaldutoJ
snoJs!", ApuJ:lSllil
Jo no!~u:lndlnd';)
~n;>lli,)\;J ;>'~JnJd 11?~~!l"i'S
.f:66T 't~~-60~:(~T)LOt
[~I]
'6UI.£,);)U
-~6uH puv &';)~uv1(;)~WP~~lddV tit &'PO1(1~JiV.!~1ndulO;) .SaJUJ.IG:jI1!pl1U SG!.rup11tloq ~11!AOt!1~11!AIOAI1! SA\OY alQ!SSa.ldll1oJ Jo uo!:j~:jndlUOJ
:juaulala a:j!I1!J ,111t!:j-aJuds ..I\{Allp~GL .3. L PI1\{ wuqU!IV
')[S
[1
°&661 'It--g~:1 's:J~wvulia p~nld IvUO~7V7I1d'1l10.]/0 /vu,m.ofl.IJ'I1lJ1.7VU,I;JI111'W3.!l hS!A ;.I\Q!ssiJoldu(o:.l,(OJ poq~iJui A'~!SO;)!!!A\U!;)!J!'~,m N!.;)UV '(~!'~.1°.!l 'W pll1! U!A!OH 'S [(11 °8861 'u;.IpuQH;)!M '}!;)N!.;)!A °Ogt ~tt
!!;)::i'\!d 'I?;J~II!lI/;J;JIV
p~nld Iv:J~.J~wnN uo s~7°N Jo O~ ;.IUIn\OA 's:JIUV1f:JdW p~nl.!l u~ I?pol/1:JN lV,J!.,I,JIIIII.N uo ;J;JU;J,lclfuo.] -WWVD uI
1f7u~ndS aIJ7/0 s6u~pad:JO.Jcl:s:J~uv1f:Jaw PJIII.!lllJ:JJ.JJtlll/'N uo I?cl7°N ',It)',!P;) ';)II!A;)G !;)I\;)!W
'S~\nS;.Il jO uo!ssn:>s!p pull SUI;.I\qOld Jo uonll:juasald
-lI\nUI!S \lI:>!l;.lIUnN
:dOqS)jlON!.-WWVD
paIl11~su! ~S11dSMOY l;)Ing
1&'[(; VVIV
'PUlI!A!A
~SN!.°HH;»)jO~S-l;)!A\!N ;)\P~tIqll~qa
.:juawO>Iaa:j!tl!.!l
'N'W
tII 'IIO!'JuIIIIIIlO]
Qd!1S
'l~s.lIpZ().1, :a'.1, pllU m~,ln ()1 'r'o
{91
"~1I61 'g9t-ltt:lg '6U~.LddU~6U3 pUV S:J~UV1{:JdJiV P;J~lddV U~ b'PO1/1;)JiV .L;Jpullu°:J 'HMO!! p,J,JUH 11:ii!I[ ,JI(lf -ssaJdwo:J JOj aJnpa;JoJd '4uaWOla ;)'4!uy ;)A!'4dUpU uV '~;J!M,J!}[UO!Z '0"0 put! 'm!~.low "){ '.I,JIII!(}'!'U [!:i
~
Derisitr "5
\ ,
"i'.
\
~
J~'~---";'---
~.
~ ,
~~:;=~::::> 0
~-
\ ) \
I
IXv
'I
Figure 2: Mach=0.85, Re=10,000, a= 0° flow past a NACAOO12airfoil: density, te~peratureand presJurefields for the sQlution corresponding to the p~ak value of the lift coefficient. 9
01 .~ua!:>YJao:> U11aq~ Jo anJ1!A>read aq~ o~ ~U!pUOdsallo:> uo!~nlos aq~ lOJ sPlag alnssald 'A~!SUap :nop!f1 ~100V::>VN f! ~S1!d Nl.oy o~ u 'OOO'OI="a"H'g8.0=~W :f: am~!.!I
=
pue aln~f!ladUla~
Figure 4: Mach=O.85, Re=10,OOO, a = 5° flow past a NACAPO12airfoil: density, temperature and pre.,surefields for the solution corresponding to the peak value of the lift roefficient. .
°1Ua!;)!Jjao;)1.J!1aq1]0 anl11A}{1!ad aq1 01 ~u!puodsa110;) uo!~nlos aq1 1°] SPlay a1~ssa1d 111S1!d }A°IJ oS = u 'OOO'OI=~ 'gsoO=q:>11W:g a1~!.!I
pU1! a1n1111adwa1 'A1!SUap :1!OP!1! Z100VDVN
Figure 6: Mach=0.85, Re=10,00O, a = 10° flow past a NACAOO12airfoil: density, temperature and pressure fields for the solution corresponding to the peak value of the'litt coe~cient. . 13
vI'
.,!:J111~1!JO sal~u~snO!l11.\
1J!1plI11~l1lp aq1 JO Sa!l01S!q am!1 :1!oJl!11lIOOY~Y.\:
~11S1Ua!:Jmao:J
~ ~Sl1ct .\\oy OOO.OI=a~ 'Sg.O=tpl1I~
:l ;)ln~!~