Abstract no. 025-1301
Integrative Factory Design by Efficient Interaction Models Achim Kampker, Alexander Meckelnborg, Peter Burggräf, Tobias Welter Laboratory for Machine Tools and Production Engineering (WZL) at RWTH Aachen University, Germany Steinbachstrasse 19, 52074 Aachen, Germany E-Mail:
[email protected] - Phone : +49 (0) 241 - 80 - 27406
POMS 23nd Annual Conference Chicago, Illinois, U.S.A. April 20 to April 23, 2012
ABSTRACT Factory design projects comprehending the planning of the production system and the industrial building face continuously increasing complexity. Common factory design approaches cannot cope with the rising coordination costs among the planning participants and disciplines. Therefore, efficient interaction models for an integrative factory design will be presented in this paper.
1. Introduction Factory design projects that include the planning of the production system and the industrial building are characterized by a growing complexity (Figure 1). This can be reasoned by two aspects: -
Growing complexity within technical disciplines leads to a higher specialization of the planning participants and
1
-
Requirement of a shorter planning duration results in a higher interdisciplinarity within the planning team Interdisciplinarity
Specialization Increasing specialization and interdisciplinarity of the factory design team
Growing complexity within technical disciplines
Builder Corporate (strategy) consultant Investment, financing and cost planner Controller Production planner Equipment planner Production control planner Environmental protection officer
Power supply planner Urban and landscape architect Architect and interior designer Building technique planner Site manager Authorized expert Fire safety engineer Equipment manufacturer …
Requirement of a shorter planning duration
Figure 1: Increasing specialization and interdisciplinarity in factory design projects [1]
Growing complexity within technical disciplines – the example of growing energy efficiency requirements Studies of DEUTSCHE POST [2] AT KEARNEY [3] show that in B2B- and B2C-markets, the importance of the CO2-footprint for the production of products gets more important for the purchase decision or the selection of suppliers. In addition to customer demands, requirements regarding the energy efficiency of factories are getting stricter by the legislature. E.g. in Germany the Energy Conservation Act requires builders to fulfill standards. In the amendment of 2009, the permissible primary energy consumption was further reduced by approximately 30% compared to the edition of 2007. Fields of action are factory buildings including building services, production processes and the machinery or equipment. In each of these fields of action, the scope of duties increases requiring more specialists. Requirement of a shorter planning duration Within the last decades, the number of product variants increased significantly and product lifecycles were reduced considerably [4]. With an increasing number of product variants and a shorter lifecycle, time-to-market has to be reduced resulting in a shorter duration for product development as well as for factory design. WESTKÄMPER stated that the accepted planning 2
duration for factories had to decrease by 75% between 1995 and 2005 [5]. A shortened planning duration can be achieved by increasing planning efficiency and by parallelizing planning tasks. Parallelization has significant effects on the planning duration. However, planning tasks which are depending on each other have to be executed at the same time. This increases the number of involved planners working on the project simultaneously. Information exchange between planning participants has to happen more frequently and in smaller units. Therefore, specialists from different disciplines are required to work together and to coordinate their work in an interdisciplinary factory design team. Furthermore, complex factory design projects are exposed to a high turbulence and dynamic given by the surrounding of the projects. Planning criteria, e.g. production quantity forecasts, are subject to changes during the whole planning process and cannot be fixed at the beginning of the project. Moreover, at the beginning of the project, it is not always clear what criteria are affecting the project [6]. This causes frequent re-planning by iterating previous planning tasks. Thereby, new turbulences are created as iteration of planning tasks effects other planning tasks and results. At the same time, factory design projects are exposed to a high cost pressure as they need to be terminated successfully with the lowest planning effort possible.
2. Challenges in interdisciplinary complex factory design projects 2.1. Problems of the current planning approach In literature, procedures for planning the production system [7, 8, 9] and for industrial building planning [10, 11, 12] are described as a linear process consisting of multiple consecutive and discrete phases. The German guideline VDI 5200 defines seven phases for production system planning beginning with the setting of objectives and terminating with ramp-up support [13]. In order to integrate the industrial building planning process, the 3
VDI 5200 assigns the performance phases defined by article 15 of the German HOAI (Official Scale of Fees for Services of Architects and Engineers) to the before mentioned seven phases of production system planning (Figure 2). Production system planning Phase 1
Phase 2
Phase 3
Phase 4
setting of objectives
establishment of the product basis
concept planning
detailed planning
LP1 establishment of the product basis
Phase 5 preparation for realization
Phase 6
Phase 7
Monitoring of realization
ramp-up support
LP6, LP7 LP2 preliminary design
LP3, LP4, LP5
preparation of contract placement and award
LP9 LP8 project supervision
project management and documentation
LP3: final design LP4: planning application LP5: execution drawings
Industrial building planning § 15 HOAI
Figure 2: Assignment of performance phases according to HOAI, article 15, to the production system planning phases [12]
Aside from the assignment of phases shown in Figure 2, no further interfaces have been defined between both disciplines. In practice, the work within one phase takes several months and it is run through without a description what information has to be exchanged between which planning participants at what point in time. In a system without dynamic changes of the planning criteria, experienced planners could compensate lacking interfaces. Due to the high dynamics in factory design projects, planning criteria are changing continuously. As a result, earlier planning phases must be iterated to adjust the planning results. These impact in turn other results having to be adjusted again. Thus, transparency on the impact of a planning criteria change is missing in particular in complex factory design projects. The lack of transparency in the interfaces between the planners of the two disciplines shall be equalized through a hierarchical organizational project structure. The VDI 5200 describes the kind of cooperation between the two disciplines as follows: "The services of other technical planners and consultants involved in construction will not be covered since in this case the 4
architect with his responsibility of coordinating and integrating these services is the central instance" [13]. Accordingly, all information is exchanged in practice between the project manager of production system planning and the architect coordinating the information flow and the work tasks in their respective disciplines. Therefore, all information exchanged has to flow in series through a bottleneck between the two project managers as shown in Figure 3. Subsequently, information has to be redistributed to the corresponding planners. Such an organizational structure works only up to a certain degree of complexity of factory design projects, as the project coordinator has to compensate for the lack of interfaces with his experience. project leader production system planning
architect/ project manager
planner
Figure 3: Example for an organizational structure in factory design projects [12]
However, this degree of complexity is frequently exceeded in todays and future factory design projects. The lack of transparency in the interfaces between the planners and in the organization of information flow leads in particular in the dynamic environment of factory design projects to -
Idle time in the planning process,
-
No value adding planning due to lack of information and
-
A high level of coordination effort between the parties involved in planning.
Based on the overall project, this results in -
Delays in the planning process,
-
Lack of quality in the planning results and thus
-
Exceeding project costs,
which - according to DREIER - can be attributed to 53% to the planning area [14]. 5
2.2. Increasing coordination costs in factory design projects In factory design projects, coordination costs occur for organizing and controlling the planners, the planning tasks and the information flows. In detail, coordination costs are composed of initiation, information, negotiation, adaptation and control costs. These arise due to -
The high number of planners,
-
The lack of transparency in the planning procedure within the own and other disciplines,
-
The spatial separation of the planning team,
-
The different mentalities and educational backgrounds,
-
The different target systems of the different planning disciplines and
-
Different data formats and structures.
With increasing interdisciplinarity and specialization, the previously mentioned points and thus the intensity of coordination are growing above average (Figure 4) [15]. 2 With further growth of specialization and interdisciplinarity, no successful project handling will be possible anymore
Coordination costs
Required coordination costs for successful project close-out
Cost pressure
1 If the accepted coordination costs are too low, problems arise: Exceeded budget Delays Quality problems
Accepted coordination costs
Specialization and interdisciplinarity
Generalists
Figure 4: Coordination costs with increasing specialization and interdisciplinarity [16]
6
The curve of the necessary coordination costs in Figure 4 shows those coordination costs necessary to finish the project successfully – i.e. within the scheduled time, budget and quality. Due to the high cost and time pressures bearing down on factory planning projects, the accepted level of coordination costs is lower than necessary in many projects. This results in problems that cause increased costs, delayed completion or quality defects. Therefore, the following question needs to be asked: How can coordination costs be reduced in interdisciplinary factory design projects? Since coordination costs have to be reduced
Coordination costs
significantly, a paradigm shift is required (Figure 5).
Current coordination costs Required coordination costs in future
Specialization and interdisciplinarity
Generalists
Figure 5: Requirement to lower coordination costs in interdisciplinary factory design projects
The necessary paradigm shift can be illustrated by an example shown in Figure 6. A human brain is compared with the Supercomputer BlueGene/L, which is at the Lawrence Livermore Laboratory in California. Both reach a computing capacity of ca. 1016 bit/s. However, the human brain needs only 10 watts of power while in comparison, the supercomputer consumes as much energy as 1200 average U.S. households [17]. Therefore, it can be deduced that the human brain works more efficiently which can be explained by its structure and functioning. While the supercomputer has a central node where all information has to flow through 7
serially, the information flow in the human brain is decentralized in a network architecture. This means that information flows in parallel, connections are designed redundantly and can be replaced in the event of an outage of one connection. If the central node in the supercomputer is broken, the information flow is interrupted.
Supercomputer BlueGene/L
Human brain
1016 bit/s
Computing power
1016 bit/s
~1.200 domestic homes
Power consumption
10 watt
Figure 6: Comparison between a supercomputer and a human brain [17]
Based on the considerations in chapter 1, on the need for a paradigm shift and on the analogy consideration between supercomputer and brain, the following hypothesis is derived: The coordination costs in complex factory design projects can be reduced by efficient interaction models.
2.3. Requirements to efficient interaction models Based on a weak point analysis of the current planning process, eight requirements to efficient interaction models were defined. This work was conducted within the research project funded by the German state of North Rhine-Westphalia "DIB - Services in the industrial building design and construction process".
8
1. Create transparency The project coordinator should understand all planning processes and information flows in the planning project. This includes the planning of the production system and the industrial building. 2. Create understanding Planning participants should understand those planning processes and information flows that are relevant to them. This includes not only the processes in their immediate periphery, but also the processes to which they deliver their results and on which they build up their planning results. 3. Filter information Planning participants shall only receive the information they require and that have an impact on their planning task. 4. Synchronize information flow Planning participants shall have the right information at the right time. 5. Reduce loss of information All information should arrive without losses and without media disruptions. 6. Reduce transformation efforts All information should be able to process without transformation effort. 7. Synchronize maturity levels Planning participants will generate the required level of maturity of their planning task at the correct point in time. This will enable a higher level of parallelization in the planning procedure. 8. Integrate changes with little effort It should be possible to integrate changes of planning criteria with little effort.
9
3. Efficient interaction models in factory design From the eight requirements derived in section 2.3, three fields of action can be derived: 1. Construction of a static interaction model (requirements 1, 2, 8) 2. Construction of an interaction model of the Digital Planning (Requirements 5, 6) 3. Construction of a dynamic interaction model (Requirements 3, 4, 5, 7, 8) The three areas are embedded in a regulatory framework for the solution concept as shown in Figure 7. Static interaction model: Modularization of the planning procedure
Time
Production system planning
Planning steps
Iteration
Modularized procedure
2
Linear planning procedure
3
Industrial building planning
1
Interaction model of digital planning Integration of the digital planning processes
Dynamic interaction model Agile project management for factory design projects
Figure 7: Proposed regulatory framework for the solution concept
Consequently, the first step is the development of a static interaction model that depicts the informational relationships between the tasks of production system and industrial building planning. Based on the static interaction model, an interaction model of digital planning and a dynamic interaction model will be developed.
3.1. Static interaction model The static interaction model consists of two descriptive and one explanatory model. The two descriptive models describe the planning processes for the production system and for the
10
industrial building as well as the information flows. To build up the explanatory model, the informational relationships between the two disciplines are identified. 3.1.1. Condition based planning for production systems Condition based planning for production systems is a modular parallel planning approach that can be reconfigured according to the specific needs of the project and the company. The modular design allows the standardization of the content (methods, tools, etc.) within a planning module. These modules encapsulate the planning content (Figure 8) on the basis of an object-oriented approach known from software development [18]. It has been developed at WZL at RWTH Aachen University within the cluster of excellence “Integrative Production Technology for High Wage Countries” funded by the German Research Foundation (DFG) as part of the Excellence Initiative and has already been described in detail in several publications [19, 20]. Input Production program Replenishment time Material cost Service level Set-up costs
Planning module
Materialsupply
Output
Input Product structure CAD drawing St. process chain Resource structure Features tree Customer tact
Buffer number Supply type Supply lot size Supply frequency Buffer levels
Planning module
Assembly Process
Output
Process chain Process times Variants tree
Figure 8: Exemplary planning modules
Dependencies between modules are defined by interfaces and occur when a module builds up on the results of another module. This is the basis for the individual configuration of the modules to a specific planning procedure (Figure 9) that can be reconfigured according to the changes in the environment (e.g. changes in quantity forecasts) [19].
11
Einzelprozesse
Konstruktionszeichnung
Fertigungsverfahren
Geometrie
Technologiealternativen
Technologieplanung
Stückliste Werkstoff Gewicht
erf. Anlagenparameter Prozessketten
A3
Produktionsablaufplan
Toleranzen
Unternehmenspotential
Technologieverträglichkeit
Referenzprodukte
Bedürfnis / Problem
Lieferzeit je Produkt [d]
Fertigungsverfahren Transportmittel/-system Technologiealternativen
Produktionprogramm
Konstruktionszeichnung Geometrie Unternehmensziele
Prozessketten Anzahl Transportmittel Produktionsablaufplan
Stückzahlszenario
Stückliste
Produktplanung
Werkstoff/Material
Unternehmensstrategie
Ladungsträger
Gewicht [kg]
A1
je Produkt Transportweg Lieferzeit (B[m]) Tabelle Rüstzeit
Transportplanung
Toleranzen
Transporteinheit
Zielkosten [€]
Tabelle Bearbeitungszeit Anforderung Baukonstr. Maschinenliste
Empfindlich-, Stapelbarkeit
Materialfluss quantitativ
Produktprogramm
Abmessung Transportm.
A12
Materialfluss qualitativ
Invest. Transportmittel
Arbeitsstunden je Schicht
Layout
Betriebs-/Wartungskosten
Arbeitstage pro Jahr Schichtbetrieb
Verfügbarkeit Mitarbeiter
Fertigungsverfahren
Zeitnutzungsgrad BM
Einzelprozesse Technologiealternativen erf. Anlagenparameter
Kapazitätsbedarfsprofil
Kapazitätsangebotsplanung
Maschinenbelegungszeit Personalaufwand
Kundentakt
Lieferzeit je Produkt
Stückzahlszenario kapazitive Restriktionen Unternehmensziele
Kundentakt
Materialfluss quantitativ
Zulieferaufträge
Materialflussplanung
Arbeitsplan
Terminketten
Bedarfsschwankungen
Materialfluss qualitativ
Technologieverträglichkeit
Unternehmensstrategie
Maschinenliste
Stückliste Werkstoff Gewicht
Ladungsträgerplanung
Empfindlichkeit Stapelbarkeit
erf. Anlagenparameter
A3
Toleranzen
Beziehungsmatrix
Produktionslosgröße
Prozessketten
Transportmittel
Produktionsablaufplan
Lagertechnik
Maschinenliste
Produktionslosgröße
Kapazitätsbedarfsprofil
Fertigungssteuerung
verf. Arbeitszeit je MA
Pers
Personalaufwand
PPS-Planung
Lagereinheit
Prioritätsregeln
Arbeitsplan
Transporteinheit
Maschinenpuffer
Abmessungen Ladeeinheit
A10
Anforderungsprofil MA
opt. Materialflussmatrix ideales Funktionsschema
Ladeeinheit
Kundenentkopplungspunkt Ladungsträger
Gewicht
Technologiealternativen
Technologieplanung
Module
Affinitätsmatrix FM/AP
Ist-Layout Werkstoff/Material
Fertigungsverfahren
Geometrie
A9
Losgröße
Geometrie
Einzelprozesse
Konstruktionszeichnung
Personalaufwand
Stückzahlszenarien
A2
Unternehmensstrategie Produktionsprogramm
Finanz- u. Kostenrahmen
Kapazitätsbedarfsprofil Maschinenbelegungszeit
A5
Losgröße Produktionsprogramm
Produktionsprogrammplanung
Referenzprodukte
A0
Kapazitätsbedarfsplanung
Stückzahlszenario Bedarfsschwankungen
Kundenaufträge Absatzprognosen
Produktprogramm
Zielplanung
Kapazitätsbedarfsprofil Maschinenbelegungszeit
A6
Produktionsprogramm
Lagerbestand Vergangenheitsdaten
Projektidee
verf. Maschinenzeit je PM
verf. Arbeitszeit je MA
Arbeitsplan
gef. Sicherheitsbestand
Initiative U/B- Leitung
verf. Maschinenzeit je PM
A18
Stückzahlszenario
Losgröße Ladungsträger
MES Lagertechnik ERP/PPS-System
Ladungsträger
Anzahl Lagerplätze
Lager- und Pufferplanung
Lagereinheit Ausfallraten
Technologieverträglichkeit
Wartungszeiten
Lagerfläche
A11
Lieferzeit je Produkt
Investition Lagertechnik Anforderung Baukonstr.
Wiederbeschaffungszeit
Unternehmenspotential
Referenzprodukte
Bedürfnis / Problem
Lieferzeit je Produkt [d] Konstruktionszeichnung
Technologiealternativen
Geometrie Unternehmensziele
Prozessketten
Stückliste
Produktplanung
Kundenentkopplungspkt
Prozessplanung
Tabelle Rüstzeit
Toleranzen
Produktionprogramm
Auftragsabwicklung
Lieferzeit je Produkt
Gewicht [kg]
A1
Arbeitsplan
Produktionsablaufplan
Werkstoff/Material
Unternehmensstrategie
Input/ Output
Fertigungsverfahren
Zielkosten [€]
Anzahl Transportmittel
Ladungsträger
Transportplanung
Transporteinheit Materialfluss quantitativ
A12
Materialfluss qualitativ
Maschinenliste
Empfindlich-, Stapelbarkeit
Transportmittel/-system
Stückzahlszenario
Maschinenpuffer
A4
Tabelle Bearbeitungszeit
Layout
Transportweg (B[m]) Anforderung Baukonstr. Abmessung Transportm. Invest. Transportmittel Betriebs-/Wartungskosten
Produktprogramm Investitionskosten V. u. E. Investitionskosten FM Personakosten
Investitio
Investition Lagertechnik
Arbeitsstunden je Schicht
Schichtbetrieb Fertigungsverfahren
Zeitnutzungsgrad BM
Einzelprozesse Technologiealternativen
Fertigungsmittelplanung
erf. Anlagenparameter
Kapazitätsbedarfsprofil
Kapazitätsangebotsplanung
Maschinenbelegungszeit Personalaufwand
verf. Maschinenzeit je PM
verf. Maschinenzeit je PM
verf. Arbeitszeit je MA
Stückzahlszenario
Maschinenliste
Anzahl Mitarbeiter
Maschinenarbeitsplatzfl.
Anforderungsprofil MA
Lagereinrichtung
Hauptnutzflächen
Investitionskosten FM
Anzahl Lagerplätze
Betriebs-/Wartungskosten
Kundenaufträge
Transportweg (B[m])
Kundentakt
Maschinenliste Abmessungen FM/AP
erforderte Raumhöhe [m]
Bodenlast
Bodenlast
Flächen für Erweiterung
Tragfähigkeit [kg/m²]
MES ERP/PPS-System
Selection
Stückzahlszenarien
Kundentakt Zulieferaufträge
opt. Materialflussmatrix
Maschinenliste
ideales Funktionsschema
Personalbedarfsplan
Anforderungsprofil MA
Kapazitätsbedarfsprofil
Affinitätsmatrix PM/AP
Anzahl Mitarbeiter
Maschinenarbeitsplatzfl.
Einsatzpunkt MA
Personalplanung
Hauptnutzflächen
Qualifikationsprofil MA
Personalaufwand
Funktionsflächen
Personalkosten
Produktionslosgröße
A10
Transportmittel
Layout
Unbebaute Flächen
Ladungsträger
Ladungsträgerplanung
A15
Verkehrsflächen
Ladeeinheit
Gewicht
Layoutplanung
Nebennutzflächen
Aufbauorganisation
A8
verf. Arbeitszeit je MA
Geometrie
Flächen für Erweiterung
Lagereinheit
Arbeitsplan
Transporteinheit
Maschinenpuffer
Abmessungen Ladeeinheit
Informationsfluss V. und E.-Netze
Stückzahlszenario
Losgröße Ladungsträger
Lagertechnik
Ladungsträger
Figure 9: Cross-linked and configured planning modules [19] Lagertechnik
Anzahl Lagerplätze
Lager- und Pufferplanung
Lagereinheit Ausfallraten
Wartungszeiten
Lagerfläche
A11
Lieferzeit je Produkt
Investition Lagertechnik
Anforderung Baukonstr.
Wiederbeschaffungszeit
Medienbereitstellung Anschlusswerte FM/AP
V. und E.-Systeme
Medienplanung
Layout Produktionprogramm
V. und E.-Netzt Investitionskosten V. u. E.
A14
Transportmittel/-system
Stückzahlszenario
Anzahl Transportmittel
3.1.2. Condition based planning for industrial buildings Ladungsträger
Transportplanung
Transporteinheit
Materialfluss quantitativ
A12
Materialfluss qualitativ Layout
Transportweg (B[m])
Anforderung Baukonstr.
Abmessung Transportm. Invest. Transportmittel
Betriebs-/Wartungskosten
Investitionskosten V. u. E. Investitionskosten FM
Layout
Personakosten
V. u. E.-Netz
Investitionsentscheidung
Investition Lagertechnik
Investitionsplanung
Bebauungsplan
Hauptnutzflächen
Gebäudegrundriss
In condition based planning for industrial buildings, the planning content of industrial Invest. Transportmittel
Betriebs-/Wartungskosten
Kundenentkopplungspunkt
PPS-Planung
Höhe Kapitalbedarf [€]
Nebennutzflächen
Zeitpunkt Kapitalbedarf
Gebäudeform
Funktionsflächen
Dauer Kapitalbindung
A16
Investitionskosten Bau
Finanz- u. Kostenrahmen
unbebaute Flächen
Investition Grundstück
Flächen für Erweiterung
Gebäudekonstruktion
Gebäudeplanung
Verkehrsflächen
Tragwerk
Innenausbau
A17
Verkehrsanbindung
erforderte Raumhöhe
Gebäudetechnik
Produktionslosgröße
Tragfähigkeit [kg/m²]
Investitionskosten Bau
Fertigungssteuerung
Anforderungen Baukonstr.
Prioritätsregeln MES
A18
building planning is encapsulated in 25 planning modules. Necessary input and output ERP/PPS-System
Informationsfluss
Visuelles Management
Informationsplanung
MES ERP/PPS-System
Leitstände Plantafeln BDE/MDE-Erfassung
A19
Kommunikationssysteme
information as well as required tools and methods are determined for each module (Figure 10). Input and output information of the planning modules are cross-linked according to the information flow in the planning process. This work has also been conducted in the research project "DIB - Services in the industrial building design and construction process" and was described in further detail in [21]. Gesamtübersicht Planungsmodule Overview of the der building planning modules
V. u E. Systeme SAW: Grundstück
Lagertechnik/-Einrichtung
Energieversorgung
SAW: Standort Transportmittel Normen und Vorschriften
Nromen und Vorschriften
Normen und Vorschriften
(1) Schalplan : AP
PRP: Masse der Betriebsmittel strat. Unternehmensziele LMP: Lagerfläche
SAW: Standort
Projektdefinition : WSP,LHE
(1) Grundrissplan : VEP,EP,IAP,VBL (2) Bewehrungsplan : AP
ATP: Baumaterialien
Initiative U/B- Leitung Zielsetzungen : WSP,LHE
WSP: Masterplan
LMP: Transportwege
Strategie/Lösungsrichtung
ZPL: Projektdefinition
FMP: Maschinenkatalog
PRP: Anschlusswerte der Großverbraucher ATP: Design
Projektidee ATP: Gebäudepläne
Zielplanung ZPL
WSP: Masterplan
Projekttermine : LHE
ZPL: Zielsetzungen
Finanz- u. Kostenrahmen : BP
ZPL: Aufgabenstellung
FMP: Abmessungen Maschine Lastenhefterstellung LHE
ZPL: Logistische Ziele
Aufgabenstellung : WSP,LHE Logistische Ziele : WSP,LHE
FMP: Bodenlast Lastenheft : SAP,ATP,TP,FRP,GAP,FAP,FIA,AWG,WVA,RTA,KAP
LMP: Anzahl Lagerplätze
ZPL: Projekttermine
PER/PTP: Anzahl Mitarbeiter
ZPL: Finanz- und Kostenrahmen
LHE: Lastenheft
Kubaturberechnungen : WSP, EP,BP Flächen- und Raumplanung FRP
LHE: Lastenheft
(1) Grundrissplan : VEP,EP,IAP,AP,VBL
LHE: Lastenheft
(2) Berechnungen : EP (3) Bemessungen : VEP, EP,IAP
FAP: Anschlusswerte der anderen technischen Gewerke
(5) Statisches Entwurfskonzept : EP
BSP: Brandschutzkonzept (6) Genehmigungsstatik : GP ATP: Design
Tragfähigkeit [kg/m²]
Starkstromanlagenplanung SAP
Behördliche Auflagen
(2) Berechnungen : EP,AP
ATP: Baumaterialien
(3) Bemessungen : VEP,EP,IAP,AP
ATP: Design
(4) Schemata : EP,AP,VBL
ATP: Ausstattungsstandard
(5) Schnittzeichnungen : VEP,EP,AP
ATP: Gebäudepläne
Planung der Abwasser-, Wasser-, Gasanlagen AWG
(6) Raumbuch : EP,AP,VBL
(4) Schemata : EP,VBL
ATP: Design
(5) Schnittzeichnungen : VEP, EP
ATP: Baumaterialien
(6) Entwässerungsplan : EP,GP
Bedarf an Park-, Lade- und Anlieferungszonen
Soziokulturelle Faktoren Infrastrukturelle Anbindung
WSP: Masterplan
Prüfung der Bebaubarkeit
SAW: Grundstück
IAP: Innenausbaupläne
(8) Raumbuch : EP,VBL
KAP,RTA,SAP,WVA: Schemata
Standortauswahl SAW
ATP: Design
Behördliche Auflagen
ATP: Baumaterialien ATP: Gebäudepläne
Fassadenplanung
(1) Gundrissplan : VEP,EP,IAP,VBL
BSP: Brandschutzkonzept ATP: Design ATP: Design
EDV-Bedarf ATP: Ausstattungsstandard
LHE: Lastenheft
(1) Grundrissplan : VEP,EP,IAP
LHE: Lastenheft
(2) Berechnungen : EP
BSP: Brandschutzkonzept
(3) Bemessungen : VEP,EP,IAP
ATP: Baumaterialien
LHE: Lastenheft
BSP: Brandschutzkonzept Informationstechnik
FIA
(4) Schemata : EP,VBL
ATP: Design
(5) Schnittzeichnungen : VEP,EP
ATP: Gebäudepläne
(6) Raumbuch : EP,VBL
ATP: Ausstattungsstandard
Planung der Wärmeversorgungsanlagen
Innere und äußere Wärmelast (3) Bemessungen : EP,IAP BSP: Brandschutzkonzept (4) Schemata : EP,VBL
WVA
Innenausbaupläne : EP,EBP
Planungsrecht Prozessseitige Restriktionen Materialfluss quantitativ, EP
ZPL: Zielsetzungen
Werksstrukturplanung
LHE: Lastenheft
Terminplanung
PST: Wertstrom Terminplan : VEP,EP PST: Fertigungssegmente
TP Masterplan : GBB, EP
WSP
PRG: Produktionsprogramm
Material- und Informationsf lussplanung MIP
Normen und Vorschriften Behördliche Vorgaben
ATP,SAP,FIA,FAP,GAP,AWG,WVA,RTA,KAP: Pläne
(3) Bemessungen : VEP,EP
(1) Anschlusswert : EP
(2) Entsorgungsgutachten : WSP,EP
GBB BSP: Brandschutzkonzept
(3) Entsorgungsbericht
LHE: Lastenheft
BSP: Brandschutzkonzept
(2) Grundrisse : VEP,EP,IAP
Förderanlagenplanung
LHE: Lastenheft
(3) Bemessungen : VEP,EP,IAP
FAP ATP: Design
(4) Raumbuch : EP,VBL
ATP: Design
XXX: Logistikkonzept
(1) Baumaterialien: VEP,EP,BP,FP,TWP, KAP,RTA,WVA,AWG,EBP Architektonische Planung ATP
XXX: Fertigungsprozesse
Budgetplanung BP
Budgetplan : EP
Normen und Vorschriften
Normen und Vorschriften
Behördliche Auflagen
Behördliche Auflagen
BP: Kostenrechnung FRP: Flächenberechnungen MIP: Materialfluss qualitativ
Vorentwurf Grundriss Vorentwurf Schnitte
FAP 2,3
Vorentwurf Ansichtenlageplan
GAP: Grundrissplan
Vorentwurf Vorbemessungen TGA
VEP
RTA 1,3,5 PRP: 1,2,3 EBP: Energiekonzept
BP: Budgetplan
FP: Fassadenpläne
TP: Terminplan
IAB: Innenausbaupläne
BSP: Brandschutzvorkonzept
AAP: Flächenbedarfe Außenanlagenplanung
Vorentwurfsplanung
ATP,SAP,FIA,FAP,GAP,AWG,WVA,RTA,KAP: Leistungsverzeichnis (EG)
EP: Entwurfspläne
Brandschutzplanung
Brandschutzkonzept : GP,IAP,GAP,FAP,FIA,SAP,AWG,WVA,RTA,KAP
Entwurfsplanung
Brandschutzvorkonzept : EP
BSP: Brandschutzkonzept
BSP
ATP,SAP,FIA,FAP,GAP,AWG,WVA,RTA,KAP: Schemata
(2) Datenpunktlisten : EP
Gebäudeautomationsplanung
Vorentwurf Kostenschätzung Vorentwurf Terminplan
MIP: Affinitäten FRP: Flächenberchnungen
PRP
TWP: Schalplan Entwurfspläne Grundriss
FIA: 1-6
FAP: 1-5
ATP: 1-4
GAP: 1-4
MIP: Materialfluss quantitativ
AWG: 1-8
MIP: Rest Materialfluss
WVA: 1-6
EP
AWG: Entwässerungsplan EP: Entwurfspläne RTA: Entwurfspläne RLTA
Entwurfspläne Kostenberechnung
AAP: 1-4 IT: EDV-Struktur
RTA: 1-6
Entwurfspläne Raumbücher
KAP: 1-6
Building material
TWP: Statisches Entwurfskonzept
PRP: 1-3
Design
Genehmigungsplanung GP
TWP: 3,6 Entwurfspläne Terminplan EBP: 3,4,5
Vorentwurf Raumbücher
TWP: Bewehrungsplan
BSP: Brandschutzkonzept
Entwurfspläne Schnitte
Entwurfspläne Ansichtenlageplan
Entwurfspläne Bemessungen TGA
Entwurfsplanung
Planning of the structural system Bauantrag
GP: Bauantrag
Genehmigungsverfahren
GV
(2) Anschlusswerte der Großverbraucher : VEP,EP,SAP
Formwork drawing
Location
SAP: 1-6
FRP: Kubaturberechnungen
Produktionsressourcenplanung
(4) Schemata : VBL
GBB: 1,2
Weight of resources
(1) Masse der Betriebsmittel : VEP,EP,TWP
(3) Grundrissplan : VEP,VBL
GAP
LHE: Lastenheft
(3) Ressourcenkatalog mit Abmessungen : ATP,VEP,EP
Reinforcement plans
TWP: Mengenliste SAP: Grundrissplan Baugenehmigung
SAP:Berechnungen SAP: Bemessungen SAP: Schemata SAP: Schnittzeichungen SAP: Raumbuch
Ausführungs planung
Ausführungsplanung
Position plans AP
Quantity list Structural design proposal
Building plan
Structural calculations
Equipment standard
Figure 10: Planning modules of condition based planning for industrial planning [21]
12
Vergabe Bauleistungen
ATP,SAP,FIA,FAP,GAP,AWG,WVA,RTA,KAP: Raumbuch
ATP: Design
Schemata
Baurechtliche Restriktionen
WSP: Masterplan
WVA 1,5,6
ATP,SAP,FIA,FAP,GAP,AWG,WVA,RTA,KAP: Funktionsbeschreibung (GU)
Produktionsprogramm (-planung)
(1) Raumbuch : VBL
Property
(3) Gebäudepläne : VEP,EP,FP,TWP,KAP,RTA,WVA,AWG,EBP
ATP: 1 - 4
AWG: 1,5,3
(7) Raumbuch : VBL
ATP: Baumaterialien
TP: Terminplan
FIA 1,5,3
(6) Entwurfspläne RLTA : EP,GP
ATP: Gebäudepläne
Kostenrechnung : IAP, VEP
(2) Design : VEP,EP,IAP,FP,TWP,SAP, FIA,FAP,GAP,KAP,RTA,WVA,AWG,EBP
SAP: 1,5,3
(5) Schnittzeichnungen : VEP,EP
RTA
ATP: Baumaterialien
(4) Ausstattungsstandard : VEP,EP,IAP, TWP,KAP,RTA,WVA,AWG
FP: Fassadenpläne
Projektmanagement, Verfahren und Entwurfsplanung
(4) Schemata : EP,VBL,EBP Planung der Raumlufttechnischen Anlagen
ATP: Ausstattungsstandard
(5) Schemata : EP,VBL ZPL: Finanz- und Kostenrahmen
PRP: Ressourcenkatalog mit Abmessungen
(2) Berechnungen : EP
(1) Baugrundgutachten : WSP,EP
Gründungsund Bodenbelastung
Gesetzliche Vorgaben Katalog mit Abmessungen
FRP: Kubaturberechnungen
(1) Grundrissplan : VEP,EP,VBL
Normen und Vorschriften
WSP: Masterplan
Behördliche Auflagen
FRP: Flächenberechnungen
(6) Raumbuch : KAP,VBL
Katasterplan/Flurkarte
opt. Materialflussmatrix ideales Funktionsschema
AAP: Flächenbedarfe Außenanlagen
LHE: Lastenheft
(5) Schnittzeichnungen : KAP
Materialfluss qualitativ : VEP
Affinitäten/Beziehungen : WSP,EP
MIP: Affinitäten
(3) Bemessungen : KAP,IAP (4) Schemata : KAP,VBL,EBP
ATP: Gebäudepläne ATP: Ausstattungsstandard
AWG,WVA,SAP,FIA,FAP,RTA,KAP: Bemessungen
ZPL: Projektdefinition
KAP
ATP: Baumaterialien (6) Raumbuch : VEP,EP,VBL
AWG,WVA,SAP,FIA,FAP,RTA,KAP: Grundrisse
IT
ZPL: Aufgabenstellung
(2) Berechnungen : KAP Planung der Kälteanlagen für RLTAnlagen
ATP: Design (5) Schnittzeichnungen : VEP, EP
Innenausbau - planung IAP
EDV-Struktur: EP
(1) Grundrissplan : EP,IAP,VBL
(2) Berechnungen : EP
Planung der Fernmeldeund Informationstechnischen Anlagen
BP: Kostenrechnung
FRP: Kubaturberechnungen
(4) Schallschutznachweis : GP
Normen und Vorschriften
Fassadenpläne : EP, EBP
FP
Grundstück : AAP,TWP
Grundstückspreis
GBB: Baugrundgutachten
FRP: Flächenberechnungen
(3) Thermische Simulation : GP
(5) Raumakkustiknachweis : GP
Normen und Vorschriften
Normen und Vorschriften
Beleuchtung : EP
AAP
FRP: Flächenberechnungen
Standort : ZPL,LHE,TWP
EBP
EP: Entwurfsplanung
Drainage/Entwässerung : VEP,EP
Außenanlagenplanung
Arealsicherheit : EP
Prüfung des Planungsrechts
(1) Energiekonzept : VEP (2) Nachweis der Einhaltung ENEV EnergieBauphysikplanung
ATP: Gebäudepläne
(7) Entwässerungsgesuch : EP
Gesetzliche Vorgaben Flächenbedarfe Außenanlagenplanung : WSP,VEP,EP
GBB: Entsorgungsgutachten
ZPL: Logistische Ziele
FP: Fassadenpläne
(4) Mengenlisten : AP
TWP
ATP:Ausstattungsstandard
Flächenberechnungen : WSP,VEP,EP,BP,AAP
Standortbewertung
Potentiale des Grundstücks
BSP: Brandschutzkonzept
(3) Positionsplan : GP
Tragwerksplanung
Kennzahlen
SAW: Standort
Informationsplanung
A19
Personalaufwand
Bedarfsschwankungen
A2
Werkstoff/Material
Stapelbarkeit
ERP/PPS-System
Unbebaute Flächen
A13
Abmessungen FM/AP Anschlusswerte FM/AP
Produktionsprogramm
Produktionsprogrammplanung
Referenzprodukte
Unternehmensstrategie
Dauer
MES
Maschinenbelegungszeit
A5
Höhe K
Zeitpun
Investition Grundstück
Prioritätsregeln
Losgröße
Produktprogramm
Lieferzeit je Produkt kapazitive Restriktionen
Empfindlichkeit
Verkehrsflächen
A16
Investitionskosten Bau Finanz- u. Kostenrahmen
Fertigungssteuerung
Kapazitätsbedarfsprofil
Kapazitätsbedarfsplanung
Stückzahlszenario Bedarfsschwankungen
Absatzprognosen
Funktionsflächen A18
Flächen- und Raumplanung
Transportmittel
Wartungszeiten
PPS-Planung Nebennutzflächen
Betriebs-/Wartungskosten
Produktionslosgröße
V.u. E.-Systeme
Produktionsprogramm
Lagerbestand
Kundenentkopplungspunkt
Lagerfläche
Ausfallraten
A7
Kapazitätsbedarfsprofil Maschinenbelegungszeit
A6
Tabelle Bearbeitungszeit
Arbeitsplan
Vergangenheitsdaten
Dimension
Tabelle Rüstzeit
Verfügbarkeit Mitarbeiter
gef. Sicherheitsbestand
Investitionsplanung
Invest. Transportmittel
Arbeitstage pro Jahr
VBL GU: Generalunternehmer EG: Einzelgewerk
Vergabeentscheidung
3.1.3. Informational linking of production system and industrial building planning After modularization of the planning processes for the production system and the industrial building, the informational interfaces between the two disciplines are defined in a next step (Figure 11). Thereto, all information is examined resulting of a module and being a planning basis for processing a module of the other discipline. E.g. required floor space would result from the planning module “layout planning” and be necessary to conduct the “architectural planning” of the industrial building. Initiative U/B- Leitung Projektidee
Stückzahlszenario
Materialfluss quantitativ
Produktionsprogramm Unternehmensziele
Maschinenliste
Werkstoff
Technologieplanung
Gewicht
A3
Toleranzen
Affinitätsmatrix FM/AP
Technologiealternativen erf. Anlagenparameter Prozessketten Produktionsablaufplan Technologieverträglichkeit
Referenzprodukte
Bedürfnis / Problem
Lieferzeit je Produkt [d]
Fertigungsverfahren
Konstruktionszeichnung
Technologiealternativen
Geometrie Unternehmensziele
Beziehungsmatrix opt. Materialflussmatrix ideales Funktionsschema
A9
Ist-Layout
Fertigungsverfahren
Geometrie Stückliste
Losgröße
Einzelprozesse
Konstruktionszeichnung
Unternehmenspotential
Materialflussplanung
Arbeitsplan
Terminketten Finanz- u. Kostenrahmen
A0
Materialfluss qualitativ
Technologieverträglichkeit
Unternehmensstrategie
Zielplanung
Prozessketten
Stückliste
Produktplanung
Kundenentkopplungspkt
Prozessplanung
Auftragsabwicklung
Lieferzeit je Produkt
Gewicht [kg]
A1
Arbeitsplan
Produktionsablaufplan
Werkstoff/Material
Unternehmensstrategie
Tabelle Rüstzeit
Toleranzen
Maschinenpuffer
A4
Tabelle Bearbeitungszeit
Zielkosten [€]
Maschinenliste
Empfindlich-, Stapelbarkeit Produktprogramm
Arbeitsstunden je Schicht Arbeitstage pro Jahr
Tabelle Rüstzeit
Schichtbetrieb Verfügbarkeit Mitarbeiter
Tabelle Bearbeitungszeit
Fertigungsverfahren
Zeitnutzungsgrad BM
Maschinenliste
Einzelprozesse
Anforderungsprofil MA
Technologiealternativen Kapazitätsbedarfsprofil Maschinenbelegungszeit
Stückzahlszenario Bedarfsschwankungen
Kundenaufträge
Investitionskosten FM Betriebs-/Wartungskosten Ausfallraten
A7
Kapazitätsbedarfsprofil
Wartungszeiten
Maschinenbelegungszeit
Produktionsprogrammplanung
Flächen- und Raumplanung A13
Funktionsflächen Verkehrsflächen Unbebaute Flächen
Maschinenliste
erforderte Raumhöhe [m]
Bodenlast
Flächen für Erweiterung
Tragfähigkeit [kg/m²]
A5
Stückzahlszenarien Bedarfsschwankungen
A2
Unternehmensstrategie
Kundentakt Zulieferaufträge
opt. Materialflussmatrix
Maschinenliste
ideales Funktionsschema
Personalbedarfsplan
Anforderungsprofil MA
Kapazitätsbedarfsprofil
Affinitätsmatrix PM/AP
Anzahl Mitarbeiter
Maschinenarbeitsplatzfl.
Einsatzpunkt MA
Personalplanung
Hauptnutzflächen
Qualifikationsprofil MA
Personalaufwand
Stapelbarkeit
Hauptnutzflächen Nebennutzflächen
Lagerfläche Transportmittel
Personalaufwand
Losgröße
Nebennutzflächen
Aufbauorganisation
A8
verf. Arbeitszeit je MA
A10
Layout
A15
Verkehrsflächen Unbebaute Flächen
Ladungsträger
Ladungsträgerplanung
Layoutplanung
Funktionsflächen
Personalkosten
Ladeeinheit
Gewicht
Transportmittel
Maschinenarbeitsplatzfl.
Lagereinrichtung
Kapazitätsbedarfsprofil Maschinenbelegungszeit
Geometrie
Empfindlichkeit
Anzahl Mitarbeiter
Abmessungen FM/AP
Produktionsprogramm
Werkstoff/Material
Produktionslosgröße
Stückzahlszenario
Anzahl Lagerplätze
Transportweg (B[m])
Abmessungen FM/AP Anschlusswerte FM/AP
V.u. E.-Systeme
Kapazitätsbedarfsplanung
Kundentakt
Absatzprognosen
Produktprogramm Referenzprodukte
verf. Maschinenzeit je PM
verf. Arbeitszeit je MA
Bodenlast
Produktionsprogramm
Lagerbestand Vergangenheitsdaten
Lieferzeit je Produkt
verf. Maschinenzeit je PM
A6
Arbeitsplan
gef. Sicherheitsbestand
kapazitive Restriktionen
Fertigungsmittelplanung
erf. Anlagenparameter
Kapazitätsangebotsplanung
Personalaufwand
Lagereinheit
Flächen für Erweiterung
Arbeitsplan
Informationsfluss
Transporteinheit
Maschinenpuffer
Abmessungen Ladeeinheit
Stückzahlszenario
Losgröße Ladungsträger
Ladungsträger
Lagertechnik
V. und E.-Netze Lagertechnik Anzahl Lagerplätze
Lager- und Pufferplanung
Lagereinheit Ausfallraten Wartungszeiten
Lagerfläche
A11
Lieferzeit je Produkt
Investition Lagertechnik Anforderung Baukonstr.
Wiederbeschaffungszeit
Medienbereitstellung Anschlusswerte FM/AP
Medienplanung
Layout Produktionprogramm
V. und E.-Systeme V. und E.-Netzt
A14
Transportmittel/-system
Stückzahlszenario
Investitionskosten V. u. E.
Anzahl Transportmittel
Ladungsträger
Transportplanung
Transporteinheit Materialfluss quantitativ Materialfluss qualitativ Layout
A12
Transportweg (B[m]) Anforderung Baukonstr. Abmessung Transportm. Invest. Transportmittel Betriebs-/Wartungskosten
Investitionskosten V. u. E. Investitionskosten FM
Layout
Personakosten
V. u. E.-Netz
Investitionsentscheidung
Investition Lagertechnik
Investitionsplanung
Invest. Transportmittel Betriebs-/Wartungskosten
A16
Investitionskosten Bau
A18
Gebäudegrundriss
Nebennutzflächen Funktionsflächen
Dauer Kapitalbindung
Verkehrsflächen unbebaute Flächen
Investition Grundstück
PPS-Planung
Bebauungsplan
Hauptnutzflächen
Höhe Kapitalbedarf [€] Zeitpunkt Kapitalbedarf
Finanz- u. Kostenrahmen
Kundenentkopplungspunkt
Flächen für Erweiterung
Gebäudeform
Gebäudeplanung A17
Gebäudekonstruktion Tragwerk Innenausbau Verkehrsanbindung
erforderte Raumhöhe
Gebäudetechnik
Produktionslosgröße
Tragfähigkeit [kg/m²]
Investitionskosten Bau
Fertigungssteuerung
Anforderungen Baukonstr.
Prioritätsregeln MES ERP/PPS-System
Informationsfluss Visuelles Management MES ERP/PPS-System
Informationsplanung A19
Leitstände Plantafeln BDE/MDE-Erfassung Kommunikationssysteme
Figure 11: Informational linkage of production system and industrial building planning
The result is a static interaction model creating transparency on all planning tasks and processes as well as all information flows required. Impacts of changes in planning criteria can thus be traced directly and affected planning tasks can be iterated. Another advantage is the ability to carry out an integrative configuration of factory design projects including the construction of the industrial building and the planning of the production system.
3.2. Interaction model of digital planning The interaction model of digital planning ensures the integration of digital tools of production system and industrial building planning. The aim is to prevent information losses and to reduce transformation effort. Therefore, digital planning tools suiting the requirements of the planning task in terms of complexity have been defined for each planning module. For example, the solution space is still very large in a very early project stage. Therefore, simple 13
planning tools (e.g. MS Powerpoint or MS Visio-based) can be used for designing true to scale 2D-blocklayouts. In a later planning phase, when the solution space is smaller and the planning gets more detailed, more sophisticated software tools can be applied for layout design (e.g. 3D-layout design tools). The use of planning tools with an appropriate level of complexity helps focussing on value adding planning tasks. However, it is necessary to ensure re-usage of planning results in a later project stage. For cross-linking commercially available and/ or proprietarily developed software tools, a concept has been developed enabling the transfer of results between different planning tools without data losses and few transformation effort. For this, each digital planning tool has a program-specific developed converter that links the tool to a common data management system (backbone) serving for all data exchange. The system has been developed within the research project “VFF – Virtual Factory Framework” that was funded by the European Union and has been described in more detail in several publications [22].
3.3. Dynamic interaction model The static interaction model provides transparency regarding the planning tasks and the necessary flow of information between the planning modules. However, there is no information about the temporal dimension. Therefore, the planner does not know at what point in time he has to deliver which information in what level of maturity. Especially in the dynamic environment of factory planning projects, planning fundamentals change so frequently that a continuous adaptation of the project plan cannot be ensured on information level. At the same time, the project leader of complex factory planning projects is not able to coordinate all information flows between the planners due to the cognitive limitation of human beings. A shift from traditional system-oriented project management systems is required. Therefore, a dynamic interaction model has been designed referencing on elements from agile software development (e.g. Scrum, Extreme Programming) [23, 24]. The target is 14
to develop an agile project management system for integrative factory design projects that organizes the exchange of information within a planning project in an efficient, dynamic and flexible way. By this, the dynamic interaction model reduces idle time of planners in the planning process. It also enables the reduction of planning errors caused by a lack of information and the reduction of the coordination effort of planning participants. The necessity and the basic principle of an agile project management system for complex factory design projects has been derived in the first phase of the cluster of excellence “Integrative Production Technology for High Wage Countries” and is going to be detailed within the second funding period.
3.4. Interim conclusion The eight requirements to efficient interaction models outlined in chapter 2.3 can be fulfilled in accordance to Figure 12 by the three presented interaction models. The static interaction model modularizes the planning process and defines informational links between input and output information of the planning modules. Therefore, the static interaction model creates transparency for the project coordinator and understanding for all planning participants. As the static interaction model shows all interactions between planning modules, impacts of changes are visualized and hence transparent. Condition based factory planning permits an easy adaptation of the planning procedure what allows the integration of changes with little effort. The interaction model of digital planning connects the software tools used during the planning process. As it links software tools with different degrees of complexity and from different disciplines, the loss of information and the effort to transform planning results are reduced. The dynamic interaction model ensures that the planners exchange the right information at the right maturity level at the right point in time. Therefore, the information gets automatically
15
filtered, the information flow and maturity levels are synchronized, losses of information are reduced and changes can be integrated in the existing planning results with little effort. 1. Create transparency 2. Create understanding
1. Static interaction model
Requirements
3. Filter information 2. Interaction model of digital planning
4. Synchronize information flow 5. Reduce loss of information
3. Dynamic interaction model
6. Reduce transformation efforts 7. Synchronize maturity levels 8. Integrate changes with little effort
Figure 12: Fulfillment of the requirements by the outlined interaction models
4. Summary The complexity in factory design projects is growing due to an increasing specialization and interdisciplinarity within the planning team. A rising complexity causes an above average growth of the coordination costs within a project. If a certain level of complexity is exceeded coordination costs rise too high and a successful project conclusion is not possible anymore. Therefore, coordination costs need to be lowered significantly by efficient interaction models. The static interaction model modularizes the planning process, defines input and output data required to carry out the planning tasks within the modules and interconnects the planning modules. This increases transparency and enables a flexible configuration of the planning process. The interaction model of digital planning links software tools with different degrees of complexity and reduces data losses as well as transformation effort. The third model is the dynamic interaction model that builds up on agile software development methods in order to exchange the right information between the planners in the correct level of maturity at the 16
right point in time. The development of the models will be detailed in future research work and applied in an industry case.
Acknowledgement: The new approach of CBFP is being investigated by the Laboratory of Machine Tools and Production Engineering (WZL) within two publicly funded research and development projects (German Research Foundation, DFG): the "Cluster of Excellence - Integrative Production Technology for High Wage Countries” and the Graduiertenkolleg 1491/1 (University graduate training programme) “Interdisciplinary Ramp-Up”. The building design and construction process is studied in the publicly funded research and development project (State of North Rhine-Westphalia, NRW.BANK Ziel2): “Services in the industrial building design and construction process”.
[1] Wiendahl H-P, Reichardt J, Nyhuis P (2009) Handbuch Fabrikplanung. Konzept, Gestaltung und Umsetzung wandlungsfähiger Produktionsstätten. Hanser, München. [2] Deutsche Post AG (2010) Delivering Tomorrow. Zukunftstrend Nachhaltige Logistik. 1st Ed. Deutsche Post AG, Bonn. [3] AT Kearney (2011) Carbon Disclosure Project. Supply Chain Report 2011. Migrating to a low carbon economy through leadership and collaboration. Carbon Disclosure Project. [4] Schuh G. (2005) Produktkomplexität managen. Strategien. Methoden. Tools. Hanser, München. [5] Westkämper E, v. Briel R, März L (1997) Planung in dynamischen Produktionssystemen Wandlungsfähigkeit als Wettbewerbsvorteil. ZWF 92/12:639-642. [6] Schuh G, Franzkoch B; Burggräf P; Nöcker J; Wesch-Potente C (2009) Configurable planning processes for factory planning. wt Werkstattstechnik online 99/4:193-198. [7] Aggteleky B (1987) Fabrikplanung - Werksentwicklung und Betriebsrationalisierung, Bd 1 - Grundlagen, Zielplanung, Vorarbeiten. Hanser, München. [8] Tompkins J A et al. (2010) Facilities Planning. Wiley, Hoboken.
17
[9] Kettner H, Schmidt J, Grein H R (1984) Leitfaden der systematischen Fabrikplanung. Hanser, München. [10] NA (2007) AIA document B101-2007. [11] NA (2007) RIBA Outline Plan of work. http://www.architecture.com/Files/RIBA ProfessionalServices/Practice/OutlinePlanofWork%28revised%29.pdf. Accessed January 21, 2012. [12] NA (2009) HOAI - the official scale of fees for services by architects and engineers. http://www.hoai.de/online/HOAI_2009/HOAI_2009.php. Accessed January 21, 2012. [13] NA (2011) VDI 5200: Factory Planning - Planning procedures. [14] Dreier F (2001) Nachtragsmanagement für gestörte Bauabläufe aus baubetrieblicher Sicht. Diss. Cottbus. [15] Ahlers G. M. (2006) Organisation der integrierten Kommunikation. Entwicklung eines prozessorientierten Organisationsansatzes. Gabler, Wiesbaden. [16] Emery F.E. (1969) Systems thinking: selected readings. Penguin, New York. [17] Markert B., Fraenzle S., Tieben C. (2009) Information und Informationsverarbeitung. Teil 2: Das Internet und die Pflege emotionaler Intelligenz. Umweltwissenschaften und Schadstoff-Forschung 21/5: 483-486. [18] Schuh G, Bergholz M (2003) Collaborative Production on the Basis of Object Oriented Software Engineering Principles. Annals of the CIRP 52/1:393-396. [19] Schuh G, Kampker A, Wesch-Potente C (2011) Condition based factory planning. Production Engineering 5/1:89-94. [20] Schuh G. et al. (2012) Virtual Production Systems. In: Brecher C. (Ed.) Integrative Production Technology for High-Wage Countries. Springer, Heidelberg. [21] Schuh G. et al. (2011) Condition based planning for processes, resources and industrial buildings. In: Correa E. (Ed.) Proceedings of the 22nd Annual Conference of the 18
Production and Operations Management Society, POMS 22nd Annual Conference RenoOperations Management: The Enabling Link.”, Nevada, U.S.A., April 29 to May 2, 2011. [22] Sacco M. et al. (2011) Virtual Factory Manager. In: Shumaker, R. (Ed.) Virtual and Mixed Reality. Systems and applications. Lecture Notes in Computer Science 6774/2011: 397-406. [23] Schwaber K., Beedle M. (2001) Agile software development with scrum. Prentice Hall, Upper Saddle River, NJ. [24] Beck K. (2000) Extreme Programming Explained. Embrace Change. Addison Wesley, Reading, MA.
19