16.323 6â16. CARE Solution Algorithm. ⢠Recall from (6â10) that. . . A. R. â1. BT . xË(t). âBu uu u x(t). = p
Clean this up by defining the Hamiltonian: (See 4â4). H(x, u ... Note the symmetry in the differential equations: ...
Feb 12, 2007 ... Lecture 4 - Carrier generation and recombination ... optical G&R: unlikely in Si, ”
indirect” bandgap material, need a phonon to conserve ...
Questions you will by able to answer by the end of today's lecture. 1. Know the .....
3.024 Electronic, Optical and Magnetic Properties of Materials. Spring 2013.
Fiber Communications Around the Globe. • Fiber optics dominates long-distance
telecommunications. • In-line Erbium-Doped Fiber Amplifiers (EDFA's) make ...
Lecture 1 - Large displacement analysis of solids/structures. Prof. K.J. Bathe ...
Lecture 2 - Finite element formulation of solids and structures. Prof. K.J. Bathe.
This chapter is devoted to economic applications with incomplete information.
They are meant to illustrate the .... It is important to note that the equilibrium action
is a best response to expected strategy of the other ..... 290CHAPTER 15. STATIC
We assumed that Player 1 will act rationally at the last date, when we ... assumed
to know that Player 2 is rational, and that she will keep believing that Player ..... [
Homework 2, 2002] Three gangsters armed with pistols, Al, Bob, and Curly, are.
Warburg (Ann. Physik. 1899) is credited with the first solution to the diffusion equation with oscillating concentration at the boundary, which is related to the ...
48. 47. 46. 44. 43. 41. Image by MIT OpenCourseWare. ... Economic. â Product and technology ... integration. â Infor
Light Reflectors and Optical Resonators. Outline. Review of Wave Reflection.
Reflection and Interference. Fiber for Telecommunications. Optical Resonators. 1
...
Design review with your Masters. Competition on Dec 9th. Akamai Prize for the winning team. â¢Celebration / demonstrati
LN–10. 3.091 – Introduction to Solid State Chemistry. Lecture Notes No. 10.
PHASE EQUILIBRIA AND PHASE DIAGRAMS.
Lecture notes. Usually posted before the lecture. Kenneth S. Krane,. Introductory
Nuclear Physics, Wiley. David J. Griffiths. Introduction to Quantum Mechanics,.
May 13, 2008 ... On the other hand, in 1993 Daniel Simon gave a quantum algorithm that ...
example (and probably for that reason, Simon's paper was originally ...
... authentic movies with drugs. • Blow. • Go. • Trainspotting. • Goodfellas. •
Basketball Diaries. • Drugstore Cowboy. • Ray. • Leaving Las Vegas. • Less Than
Zero.
Strategic design of supply chain: Outsourcing/VI decisions. â Nature of relationships. â Limits of outsourcing? â¢
1The notes are based on lecture slides with inclusion of important insights
emphasized ..... that are close to big countries are rich not just because of trade,
but.
a now-gone class website by Prof. Richard ... This image is in the public domain. Source: ..... purchase in quantity for
Feb 6, 2007 ... Department of Electrical Engineering & Computer Science. ELECTRICAL
SAFETY for Staff and Students in EECS Instructional Laboratories.
Run it in Eclipse (Run â Run As â Java Application). What is the output of the unmodified program? Include this as a
... for condition to be true. •. • Other thread signals waiting thread(s), unblocking
them ... Computer Systems: A Programmer's Perspective. Prentice Hall, 2003.
THE DISCRETE FOURIER SERIES. 1. Lecture 8 - 43 minutes. Convolution
Proper-ly. 1,(')~X (k). 1(n) "X,(k) Xz(k) c. 2-0. Dual Property. X4(k)--L E. FX,(f)Xk). 8
.
Questions you should be able to answer by the end of today's lecture. 1. What is the origin of magnetic anisotropy? 2. What are hard and easy axis in transition ...
Lecture 25 Hysteresis in Ferromagnetic Materials (Majority of illustrations in this lecture were generously provided by Prof. Geoffrey Beach) Today 1. Magnetic anisotropy. 2. Transition metals: crystal structure and anisotropy. 3. Hard and easy axis. 4. Derivation of hysteresis loop for a single domain ferromagnet. 5. Coercive field vs. saturation magnetization. Questions you should be able to answer by the end of today’s lecture 1. What is the origin of magnetic anisotropy? 2. What are hard and easy axis in transition metals? 3. Why does cobalt have very high anisotropy constant? 4. What is the origin of hysteresis? 5. How to plot magnetization energy density vs. angle between the magnetization and the easy axis? 6. What is coercive field?
1
From now on we will focus on ferromagnetic materials as they are used most frequently in applications ranging from magnetic data storage to power generation. Last lecture we have shown how the fermionic nature of electrons leads to the spontaneous ordering of the magnetic dipoles inside the ferromagnetic material. So how does the magnetization of the material as a whole depend on the applied magnetic field? It turns out that ferromagnetic materials exhibit memory effects in their M H dependence, this property is measured as a hysteresis loop:
Courtesy of Wayne Storr. Used with permission.
If we apply sufficient magnetic field to produce complete saturation inside the ferromagnet and then start reducing the field back to zero, we will find that at zero applied field some residual magnetization = “remnant induction” will remain and it will take a significant field “coercive field” to completely demagnetize the material. Curiously, materials that have large magnetic permeability (which corresponds to the large saturation magnetization) exhibit small coercive field and vice versa.
2
Last lecture we have discussed the energies (Hamiltonians) contributing to the magnetization process:
Hˆ ex Jij Sˆi Sˆ j i, j
Hˆ field B BSˆi i But neither of the Hamiltonians above can explain why there exists a coercive field or why m H c & m H c . (Here m is magnetic susceptibility and H c is coercive field). The key to these question lies in the “magnetic anisotropy” – the dependence of the magnetic properties on the direction of the applied field with respect to the crystal lattice. It turns out that depending on the orientation of the field with respect to the crystal lattice one would need a lower or higher magnetic field to reach the saturation magnetization. Easy axis is the direction inside a crystal, along which small applied magnetic field is sufficient to reach the saturation magnetization. Hard axis is the direction inside a crystal, along which large applied magnetic field is needed to reach the saturation magnetization. Consider the following three examples: Fe (bcc), Ni (fcc), Co (hcp):
Figure removed due to copyright restrictions. See Fig. 6.1: O’Handley, Robert C. Modern Magnetic Materials. Wiley, 1999.
3
For bcc Fe the highest density of atoms is in the direction, and consequently is the hard axis. In contrast, the atom density is lowest in directions and consequently is the easy axis. Magnetization curves above show that the saturation magnetization in direction requires significantly lower field than in the direction.
For fcc Ni the is lowest packed direction and it is the easy axis. is the hard axis.
For hcp Co the is the lowest packed direction (perpendicular to the close-packed plane) and is the easy axis. The is the close-packed direction and it corresponds to the hard axis. Note, that hcp structure of Co makes it the one of the most anisotropic materials (see the different units on the figure above).
For a material with a single easy axis perpendicular to the hard axes (e.g. Co) the energy associated with the magnetic anisotropy can be written as:
Ea K un sin 2n K u1 sin 2 K u2 sin 4 ... K u1 sin 2 n1
Where is the angle between the magnetization and the easy axis, and K un are the anisotropy constants. For cubic material with three easy axes, the anisotropy energy is written as:
Ea K1 12 22 2232 3212 K 212 2232 ... Where i cosi and i are the angles between the magnetization and the easy axes. The physical origin of the magnetic anisotropy energy is the interaction of the mean exchange field and the orbital angular momenta of the atoms (ions) in the lattice. This interaction is referred to as spin-orbit coupling.
4
Derivation of the hysteresis loop for a single domain ferromagnet. Let’s start with an anisotropic (with single easy axis) ferromagnet sufficiently small so it consists of a single magnetic domain, i.e. all magnetic dipoles are aligned in the same direction maximizing the total magnetization M . Assume that the angle between the magnetization and the easy axis is . In the absence of an external field the energy of the ferromagnet as a whole is dominated by the anisotropy energy:
Ea K u sin 2 When external field is applied the ferromagnet in addition to the anisotropy energy we will also have the magnetostatic or Zeeman energy:
Emagnetostatic HM s cos Where H is the applied magnetic field, M s is the saturation magnetization and is the angle between the applied field and the easy axis. Then the total energy is: E Ea Emagnetostatic K u sin 2 HM s cos Let’s consider two important special cases for the direction of the magnetic field: along easy or along hard axis. Hard axis magnetization.
2
E K u sin 2 HM s cos K u sin 2 HM s sin
5
Let’s find the angle that minimizes the energy in this case: dE 2K u sin HM s cos 0 n, M s H or M s H d 2 2K H u 2 2 Ms d E 2 K u sin 2 HM s sin 2K u cos2 0 2 d H 2K u 2 Ms The only way the conditions above can be satisfied if: H a
2K u H M Ku a s . Ms 2
Where H a is referred to as anisotropy field (field at which magnetization reaches saturation). For fields bellow the anisotropy field from the equation:
dE 2K u sin HM s cos 0 d
we also find: 2K u sin HM s 0 . For the component of magnetization that is parallel to the M applied magnetic field we find: sin . Substituting this into the previous equation we Ms find:
2K u sin HM s 0 2K u M Ms
M H M M HM s 0 2 a s HM s 0 2 Ms Ms
H Ha
We find that for the hard axis magnetization changes linearly with applied field until it reaches saturation. Easy axis magnetization.
0 E K u sin 2 HM s cos K u sin 2 HM s cos
6
If we find the angle that minimizes the energy in this case: dE 2K u cos HM s sin 0 n, M s H or M s H d 2K u 0H 2 Ms d E 2 K u cos2 HM s cos 2K u sin 2 0 2 d H 2K u Ms Energy will be minimized for all magnetic field values between:
2K u 2K u 2K u . The coercive field is: H c H Ms Ms Ms
All of these fields will yield saturation magnetization. This results in the ideal rectangular shape of the hysteresis loop.
2K u , it is obvious that materials with high Ms saturation magnetization would have low coercive field unless they have really high anisotropy. From the expression for the coercive field H c
But given a particular anisotropy constant: M sat H c . Ideal hysteresis loop:
7
MIT OpenCourseWare http://ocw.mit.edu
3.024 Electronic, Optical and Magnetic Properties of Materials Spring 2013
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.