Integrative Factory Design by Efficient Interaction ...

1 downloads 0 Views 709KB Size Report
industrial building face continuously increasing complexity. Common factory design ... Therefore, efficient interaction models for an integrative factory design will.
Abstract no. 025-1301

Integrative Factory Design by Efficient Interaction Models Achim Kampker, Alexander Meckelnborg, Peter Burggräf, Tobias Welter Laboratory for Machine Tools and Production Engineering (WZL) at RWTH Aachen University, Germany Steinbachstrasse 19, 52074 Aachen, Germany E-Mail: [email protected] - Phone : +49 (0) 241 - 80 - 27406

POMS 23nd Annual Conference Chicago, Illinois, U.S.A. April 20 to April 23, 2012

ABSTRACT Factory design projects comprehending the planning of the production system and the industrial building face continuously increasing complexity. Common factory design approaches cannot cope with the rising coordination costs among the planning participants and disciplines. Therefore, efficient interaction models for an integrative factory design will be presented in this paper.

1. Introduction Factory design projects that include the planning of the production system and the industrial building are characterized by a growing complexity (Figure 1). This can be reasoned by two aspects: -

Growing complexity within technical disciplines leads to a higher specialization of the planning participants and

1

-

Requirement of a shorter planning duration results in a higher interdisciplinarity within the planning team Interdisciplinarity

Specialization Increasing specialization and interdisciplinarity of the factory design team  



Growing complexity within technical disciplines

    

 

Builder Corporate (strategy) consultant Investment, financing and cost planner Controller Production planner Equipment planner Production control planner Environmental protection officer

 

    

Power supply planner Urban and landscape architect Architect and interior designer Building technique planner Site manager Authorized expert Fire safety engineer Equipment manufacturer …

Requirement of a shorter planning duration

Figure 1: Increasing specialization and interdisciplinarity in factory design projects [1]

Growing complexity within technical disciplines – the example of growing energy efficiency requirements Studies of DEUTSCHE POST [2] AT KEARNEY [3] show that in B2B- and B2C-markets, the importance of the CO2-footprint for the production of products gets more important for the purchase decision or the selection of suppliers. In addition to customer demands, requirements regarding the energy efficiency of factories are getting stricter by the legislature. E.g. in Germany the Energy Conservation Act requires builders to fulfill standards. In the amendment of 2009, the permissible primary energy consumption was further reduced by approximately 30% compared to the edition of 2007. Fields of action are factory buildings including building services, production processes and the machinery or equipment. In each of these fields of action, the scope of duties increases requiring more specialists. Requirement of a shorter planning duration Within the last decades, the number of product variants increased significantly and product lifecycles were reduced considerably [4]. With an increasing number of product variants and a shorter lifecycle, time-to-market has to be reduced resulting in a shorter duration for product development as well as for factory design. WESTKÄMPER stated that the accepted planning 2

duration for factories had to decrease by 75% between 1995 and 2005 [5]. A shortened planning duration can be achieved by increasing planning efficiency and by parallelizing planning tasks. Parallelization has significant effects on the planning duration. However, planning tasks which are depending on each other have to be executed at the same time. This increases the number of involved planners working on the project simultaneously. Information exchange between planning participants has to happen more frequently and in smaller units. Therefore, specialists from different disciplines are required to work together and to coordinate their work in an interdisciplinary factory design team. Furthermore, complex factory design projects are exposed to a high turbulence and dynamic given by the surrounding of the projects. Planning criteria, e.g. production quantity forecasts, are subject to changes during the whole planning process and cannot be fixed at the beginning of the project. Moreover, at the beginning of the project, it is not always clear what criteria are affecting the project [6]. This causes frequent re-planning by iterating previous planning tasks. Thereby, new turbulences are created as iteration of planning tasks effects other planning tasks and results. At the same time, factory design projects are exposed to a high cost pressure as they need to be terminated successfully with the lowest planning effort possible.

2. Challenges in interdisciplinary complex factory design projects 2.1. Problems of the current planning approach In literature, procedures for planning the production system [7, 8, 9] and for industrial building planning [10, 11, 12] are described as a linear process consisting of multiple consecutive and discrete phases. The German guideline VDI 5200 defines seven phases for production system planning beginning with the setting of objectives and terminating with ramp-up support [13]. In order to integrate the industrial building planning process, the 3

VDI 5200 assigns the performance phases defined by article 15 of the German HOAI (Official Scale of Fees for Services of Architects and Engineers) to the before mentioned seven phases of production system planning (Figure 2). Production system planning Phase 1

Phase 2

Phase 3

Phase 4

setting of objectives

establishment of the product basis

concept planning

detailed planning

LP1 establishment of the product basis

Phase 5 preparation for realization

Phase 6

Phase 7

Monitoring of realization

ramp-up support

LP6, LP7 LP2 preliminary design

LP3, LP4, LP5

preparation of contract placement and award

LP9 LP8 project supervision

project management and documentation

LP3: final design LP4: planning application LP5: execution drawings

Industrial building planning § 15 HOAI

Figure 2: Assignment of performance phases according to HOAI, article 15, to the production system planning phases [12]

Aside from the assignment of phases shown in Figure 2, no further interfaces have been defined between both disciplines. In practice, the work within one phase takes several months and it is run through without a description what information has to be exchanged between which planning participants at what point in time. In a system without dynamic changes of the planning criteria, experienced planners could compensate lacking interfaces. Due to the high dynamics in factory design projects, planning criteria are changing continuously. As a result, earlier planning phases must be iterated to adjust the planning results. These impact in turn other results having to be adjusted again. Thus, transparency on the impact of a planning criteria change is missing in particular in complex factory design projects. The lack of transparency in the interfaces between the planners of the two disciplines shall be equalized through a hierarchical organizational project structure. The VDI 5200 describes the kind of cooperation between the two disciplines as follows: "The services of other technical planners and consultants involved in construction will not be covered since in this case the 4

architect with his responsibility of coordinating and integrating these services is the central instance" [13]. Accordingly, all information is exchanged in practice between the project manager of production system planning and the architect coordinating the information flow and the work tasks in their respective disciplines. Therefore, all information exchanged has to flow in series through a bottleneck between the two project managers as shown in Figure 3. Subsequently, information has to be redistributed to the corresponding planners. Such an organizational structure works only up to a certain degree of complexity of factory design projects, as the project coordinator has to compensate for the lack of interfaces with his experience. project leader production system planning

architect/ project manager

planner

Figure 3: Example for an organizational structure in factory design projects [12]

However, this degree of complexity is frequently exceeded in todays and future factory design projects. The lack of transparency in the interfaces between the planners and in the organization of information flow leads in particular in the dynamic environment of factory design projects to -

Idle time in the planning process,

-

No value adding planning due to lack of information and

-

A high level of coordination effort between the parties involved in planning.

Based on the overall project, this results in -

Delays in the planning process,

-

Lack of quality in the planning results and thus

-

Exceeding project costs,

which - according to DREIER - can be attributed to 53% to the planning area [14]. 5

2.2. Increasing coordination costs in factory design projects In factory design projects, coordination costs occur for organizing and controlling the planners, the planning tasks and the information flows. In detail, coordination costs are composed of initiation, information, negotiation, adaptation and control costs. These arise due to -

The high number of planners,

-

The lack of transparency in the planning procedure within the own and other disciplines,

-

The spatial separation of the planning team,

-

The different mentalities and educational backgrounds,

-

The different target systems of the different planning disciplines and

-

Different data formats and structures.

With increasing interdisciplinarity and specialization, the previously mentioned points and thus the intensity of coordination are growing above average (Figure 4) [15]. 2 With further growth of specialization and interdisciplinarity, no successful project handling will be possible anymore

Coordination costs

Required coordination costs for successful project close-out

Cost pressure

1 If the accepted coordination costs are too low, problems arise:  Exceeded budget  Delays  Quality problems

Accepted coordination costs

Specialization and interdisciplinarity

Generalists

Figure 4: Coordination costs with increasing specialization and interdisciplinarity [16]

6

The curve of the necessary coordination costs in Figure 4 shows those coordination costs necessary to finish the project successfully – i.e. within the scheduled time, budget and quality. Due to the high cost and time pressures bearing down on factory planning projects, the accepted level of coordination costs is lower than necessary in many projects. This results in problems that cause increased costs, delayed completion or quality defects. Therefore, the following question needs to be asked: How can coordination costs be reduced in interdisciplinary factory design projects? Since coordination costs have to be reduced

Coordination costs

significantly, a paradigm shift is required (Figure 5).

Current coordination costs Required coordination costs in future

Specialization and interdisciplinarity

Generalists

Figure 5: Requirement to lower coordination costs in interdisciplinary factory design projects

The necessary paradigm shift can be illustrated by an example shown in Figure 6. A human brain is compared with the Supercomputer BlueGene/L, which is at the Lawrence Livermore Laboratory in California. Both reach a computing capacity of ca. 1016 bit/s. However, the human brain needs only 10 watts of power while in comparison, the supercomputer consumes as much energy as 1200 average U.S. households [17]. Therefore, it can be deduced that the human brain works more efficiently which can be explained by its structure and functioning. While the supercomputer has a central node where all information has to flow through 7

serially, the information flow in the human brain is decentralized in a network architecture. This means that information flows in parallel, connections are designed redundantly and can be replaced in the event of an outage of one connection. If the central node in the supercomputer is broken, the information flow is interrupted.

Supercomputer BlueGene/L

Human brain

1016 bit/s

Computing power

1016 bit/s

~1.200 domestic homes

Power consumption

10 watt

Figure 6: Comparison between a supercomputer and a human brain [17]

Based on the considerations in chapter 1, on the need for a paradigm shift and on the analogy consideration between supercomputer and brain, the following hypothesis is derived: The coordination costs in complex factory design projects can be reduced by efficient interaction models.

2.3. Requirements to efficient interaction models Based on a weak point analysis of the current planning process, eight requirements to efficient interaction models were defined. This work was conducted within the research project funded by the German state of North Rhine-Westphalia "DIB - Services in the industrial building design and construction process".

8

1. Create transparency The project coordinator should understand all planning processes and information flows in the planning project. This includes the planning of the production system and the industrial building. 2. Create understanding Planning participants should understand those planning processes and information flows that are relevant to them. This includes not only the processes in their immediate periphery, but also the processes to which they deliver their results and on which they build up their planning results. 3. Filter information Planning participants shall only receive the information they require and that have an impact on their planning task. 4. Synchronize information flow Planning participants shall have the right information at the right time. 5. Reduce loss of information All information should arrive without losses and without media disruptions. 6. Reduce transformation efforts All information should be able to process without transformation effort. 7. Synchronize maturity levels Planning participants will generate the required level of maturity of their planning task at the correct point in time. This will enable a higher level of parallelization in the planning procedure. 8. Integrate changes with little effort It should be possible to integrate changes of planning criteria with little effort.

9

3. Efficient interaction models in factory design From the eight requirements derived in section 2.3, three fields of action can be derived: 1. Construction of a static interaction model (requirements 1, 2, 8) 2. Construction of an interaction model of the Digital Planning (Requirements 5, 6) 3. Construction of a dynamic interaction model (Requirements 3, 4, 5, 7, 8) The three areas are embedded in a regulatory framework for the solution concept as shown in Figure 7. Static interaction model: Modularization of the planning procedure

Time

Production system planning

Planning steps

Iteration

Modularized procedure

2 

Linear planning procedure

3

Industrial building planning

1



Interaction model of digital planning Integration of the digital planning processes

Dynamic interaction model Agile project management for factory design projects

Figure 7: Proposed regulatory framework for the solution concept

Consequently, the first step is the development of a static interaction model that depicts the informational relationships between the tasks of production system and industrial building planning. Based on the static interaction model, an interaction model of digital planning and a dynamic interaction model will be developed.

3.1. Static interaction model The static interaction model consists of two descriptive and one explanatory model. The two descriptive models describe the planning processes for the production system and for the

10

industrial building as well as the information flows. To build up the explanatory model, the informational relationships between the two disciplines are identified. 3.1.1. Condition based planning for production systems Condition based planning for production systems is a modular parallel planning approach that can be reconfigured according to the specific needs of the project and the company. The modular design allows the standardization of the content (methods, tools, etc.) within a planning module. These modules encapsulate the planning content (Figure 8) on the basis of an object-oriented approach known from software development [18]. It has been developed at WZL at RWTH Aachen University within the cluster of excellence “Integrative Production Technology for High Wage Countries” funded by the German Research Foundation (DFG) as part of the Excellence Initiative and has already been described in detail in several publications [19, 20]. Input Production program Replenishment time Material cost Service level Set-up costs

Planning module

Materialsupply

Output

Input Product structure CAD drawing St. process chain Resource structure Features tree Customer tact

Buffer number Supply type Supply lot size Supply frequency Buffer levels

Planning module

Assembly Process

Output

Process chain Process times Variants tree

Figure 8: Exemplary planning modules

Dependencies between modules are defined by interfaces and occur when a module builds up on the results of another module. This is the basis for the individual configuration of the modules to a specific planning procedure (Figure 9) that can be reconfigured according to the changes in the environment (e.g. changes in quantity forecasts) [19].

11

Einzelprozesse

Konstruktionszeichnung

Fertigungsverfahren

Geometrie

Technologiealternativen

Technologieplanung

Stückliste Werkstoff Gewicht

erf. Anlagenparameter Prozessketten

A3

Produktionsablaufplan

Toleranzen

Unternehmenspotential

Technologieverträglichkeit

Referenzprodukte

Bedürfnis / Problem

Lieferzeit je Produkt [d]

Fertigungsverfahren Transportmittel/-system Technologiealternativen

Produktionprogramm

Konstruktionszeichnung Geometrie Unternehmensziele

Prozessketten Anzahl Transportmittel Produktionsablaufplan

Stückzahlszenario

Stückliste

Produktplanung

Werkstoff/Material

Unternehmensstrategie

Ladungsträger

Gewicht [kg]

A1

je Produkt Transportweg Lieferzeit (B[m]) Tabelle Rüstzeit

Transportplanung

Toleranzen

Transporteinheit

Zielkosten [€]

Tabelle Bearbeitungszeit Anforderung Baukonstr. Maschinenliste

Empfindlich-, Stapelbarkeit

Materialfluss quantitativ

Produktprogramm

Abmessung Transportm.

A12

Materialfluss qualitativ

Invest. Transportmittel

Arbeitsstunden je Schicht

Layout

Betriebs-/Wartungskosten

Arbeitstage pro Jahr Schichtbetrieb

Verfügbarkeit Mitarbeiter

Fertigungsverfahren

Zeitnutzungsgrad BM

Einzelprozesse Technologiealternativen erf. Anlagenparameter

Kapazitätsbedarfsprofil

Kapazitätsangebotsplanung

Maschinenbelegungszeit Personalaufwand

Kundentakt

Lieferzeit je Produkt

Stückzahlszenario kapazitive Restriktionen Unternehmensziele

Kundentakt

Materialfluss quantitativ

Zulieferaufträge

Materialflussplanung

Arbeitsplan

Terminketten

Bedarfsschwankungen

Materialfluss qualitativ

Technologieverträglichkeit

Unternehmensstrategie

Maschinenliste

Stückliste Werkstoff Gewicht

Ladungsträgerplanung

Empfindlichkeit Stapelbarkeit

erf. Anlagenparameter

A3

Toleranzen

Beziehungsmatrix

Produktionslosgröße

Prozessketten

Transportmittel

Produktionsablaufplan

Lagertechnik

Maschinenliste

Produktionslosgröße

Kapazitätsbedarfsprofil

Fertigungssteuerung

verf. Arbeitszeit je MA

Pers

Personalaufwand

PPS-Planung

Lagereinheit

Prioritätsregeln

Arbeitsplan

Transporteinheit

Maschinenpuffer

Abmessungen Ladeeinheit

A10

Anforderungsprofil MA

opt. Materialflussmatrix ideales Funktionsschema

Ladeeinheit

Kundenentkopplungspunkt Ladungsträger

Gewicht

Technologiealternativen

Technologieplanung

Module

Affinitätsmatrix FM/AP

Ist-Layout Werkstoff/Material

Fertigungsverfahren

Geometrie

A9

Losgröße

Geometrie

Einzelprozesse

Konstruktionszeichnung

Personalaufwand

Stückzahlszenarien

A2

Unternehmensstrategie Produktionsprogramm

Finanz- u. Kostenrahmen

Kapazitätsbedarfsprofil Maschinenbelegungszeit

A5

Losgröße Produktionsprogramm

Produktionsprogrammplanung

Referenzprodukte

A0

Kapazitätsbedarfsplanung

Stückzahlszenario Bedarfsschwankungen

Kundenaufträge Absatzprognosen

Produktprogramm

Zielplanung

Kapazitätsbedarfsprofil Maschinenbelegungszeit

A6

Produktionsprogramm

Lagerbestand Vergangenheitsdaten

Projektidee

verf. Maschinenzeit je PM

verf. Arbeitszeit je MA

Arbeitsplan

gef. Sicherheitsbestand

Initiative U/B- Leitung

verf. Maschinenzeit je PM

A18

Stückzahlszenario

Losgröße Ladungsträger

MES Lagertechnik ERP/PPS-System

Ladungsträger

Anzahl Lagerplätze

Lager- und Pufferplanung

Lagereinheit Ausfallraten

Technologieverträglichkeit

Wartungszeiten

Lagerfläche

A11

Lieferzeit je Produkt

Investition Lagertechnik Anforderung Baukonstr.

Wiederbeschaffungszeit

Unternehmenspotential

Referenzprodukte

Bedürfnis / Problem

Lieferzeit je Produkt [d] Konstruktionszeichnung

Technologiealternativen

Geometrie Unternehmensziele

Prozessketten

Stückliste

Produktplanung

Kundenentkopplungspkt

Prozessplanung

Tabelle Rüstzeit

Toleranzen

Produktionprogramm

Auftragsabwicklung

Lieferzeit je Produkt

Gewicht [kg]

A1

Arbeitsplan

Produktionsablaufplan

Werkstoff/Material

Unternehmensstrategie

Input/ Output

Fertigungsverfahren

Zielkosten [€]

Anzahl Transportmittel

Ladungsträger

Transportplanung

Transporteinheit Materialfluss quantitativ

A12

Materialfluss qualitativ

Maschinenliste

Empfindlich-, Stapelbarkeit

Transportmittel/-system

Stückzahlszenario

Maschinenpuffer

A4

Tabelle Bearbeitungszeit

Layout

Transportweg (B[m]) Anforderung Baukonstr. Abmessung Transportm. Invest. Transportmittel Betriebs-/Wartungskosten

Produktprogramm Investitionskosten V. u. E. Investitionskosten FM Personakosten

Investitio

Investition Lagertechnik

Arbeitsstunden je Schicht

Schichtbetrieb Fertigungsverfahren

Zeitnutzungsgrad BM

Einzelprozesse Technologiealternativen

Fertigungsmittelplanung

erf. Anlagenparameter

Kapazitätsbedarfsprofil

Kapazitätsangebotsplanung

Maschinenbelegungszeit Personalaufwand

verf. Maschinenzeit je PM

verf. Maschinenzeit je PM

verf. Arbeitszeit je MA

Stückzahlszenario

Maschinenliste

Anzahl Mitarbeiter

Maschinenarbeitsplatzfl.

Anforderungsprofil MA

Lagereinrichtung

Hauptnutzflächen

Investitionskosten FM

Anzahl Lagerplätze

Betriebs-/Wartungskosten

Kundenaufträge

Transportweg (B[m])

Kundentakt

Maschinenliste Abmessungen FM/AP

erforderte Raumhöhe [m]

Bodenlast

Bodenlast

Flächen für Erweiterung

Tragfähigkeit [kg/m²]

MES ERP/PPS-System

Selection

Stückzahlszenarien

Kundentakt Zulieferaufträge

opt. Materialflussmatrix

Maschinenliste

ideales Funktionsschema

Personalbedarfsplan

Anforderungsprofil MA

Kapazitätsbedarfsprofil

Affinitätsmatrix PM/AP

Anzahl Mitarbeiter

Maschinenarbeitsplatzfl.

Einsatzpunkt MA

Personalplanung

Hauptnutzflächen

Qualifikationsprofil MA

Personalaufwand

Funktionsflächen

Personalkosten

Produktionslosgröße

A10

Transportmittel

Layout

Unbebaute Flächen

Ladungsträger

Ladungsträgerplanung

A15

Verkehrsflächen

Ladeeinheit

Gewicht

Layoutplanung

Nebennutzflächen

Aufbauorganisation

A8

verf. Arbeitszeit je MA

Geometrie

Flächen für Erweiterung

Lagereinheit

Arbeitsplan

Transporteinheit

Maschinenpuffer

Abmessungen Ladeeinheit

Informationsfluss V. und E.-Netze

Stückzahlszenario

Losgröße Ladungsträger

Lagertechnik

Ladungsträger

Figure 9: Cross-linked and configured planning modules [19] Lagertechnik

Anzahl Lagerplätze

Lager- und Pufferplanung

Lagereinheit Ausfallraten

Wartungszeiten

Lagerfläche

A11

Lieferzeit je Produkt

Investition Lagertechnik

Anforderung Baukonstr.

Wiederbeschaffungszeit

Medienbereitstellung Anschlusswerte FM/AP

V. und E.-Systeme

Medienplanung

Layout Produktionprogramm

V. und E.-Netzt Investitionskosten V. u. E.

A14

Transportmittel/-system

Stückzahlszenario

Anzahl Transportmittel

3.1.2. Condition based planning for industrial buildings Ladungsträger

Transportplanung

Transporteinheit

Materialfluss quantitativ

A12

Materialfluss qualitativ Layout

Transportweg (B[m])

Anforderung Baukonstr.

Abmessung Transportm. Invest. Transportmittel

Betriebs-/Wartungskosten

Investitionskosten V. u. E. Investitionskosten FM

Layout

Personakosten

V. u. E.-Netz

Investitionsentscheidung

Investition Lagertechnik

Investitionsplanung

Bebauungsplan

Hauptnutzflächen

Gebäudegrundriss

In condition based planning for industrial buildings, the planning content of industrial Invest. Transportmittel

Betriebs-/Wartungskosten

Kundenentkopplungspunkt

PPS-Planung

Höhe Kapitalbedarf [€]

Nebennutzflächen

Zeitpunkt Kapitalbedarf

Gebäudeform

Funktionsflächen

Dauer Kapitalbindung

A16

Investitionskosten Bau

Finanz- u. Kostenrahmen

unbebaute Flächen

Investition Grundstück

Flächen für Erweiterung

Gebäudekonstruktion

Gebäudeplanung

Verkehrsflächen

Tragwerk

Innenausbau

A17

Verkehrsanbindung

erforderte Raumhöhe

Gebäudetechnik

Produktionslosgröße

Tragfähigkeit [kg/m²]

Investitionskosten Bau

Fertigungssteuerung

Anforderungen Baukonstr.

Prioritätsregeln MES

A18

building planning is encapsulated in 25 planning modules. Necessary input and output ERP/PPS-System

Informationsfluss

Visuelles Management

Informationsplanung

MES ERP/PPS-System

Leitstände Plantafeln BDE/MDE-Erfassung

A19

Kommunikationssysteme

information as well as required tools and methods are determined for each module (Figure 10). Input and output information of the planning modules are cross-linked according to the information flow in the planning process. This work has also been conducted in the research project "DIB - Services in the industrial building design and construction process" and was described in further detail in [21]. Gesamtübersicht Planungsmodule Overview of the der building planning modules

V. u E. Systeme SAW: Grundstück

Lagertechnik/-Einrichtung

Energieversorgung

SAW: Standort Transportmittel Normen und Vorschriften

Nromen und Vorschriften

Normen und Vorschriften

(1) Schalplan : AP

PRP: Masse der Betriebsmittel strat. Unternehmensziele LMP: Lagerfläche

SAW: Standort

Projektdefinition : WSP,LHE

(1) Grundrissplan : VEP,EP,IAP,VBL (2) Bewehrungsplan : AP

ATP: Baumaterialien

Initiative U/B- Leitung Zielsetzungen : WSP,LHE

WSP: Masterplan

LMP: Transportwege

Strategie/Lösungsrichtung

ZPL: Projektdefinition

FMP: Maschinenkatalog

PRP: Anschlusswerte der Großverbraucher ATP: Design

Projektidee ATP: Gebäudepläne

Zielplanung ZPL

WSP: Masterplan

Projekttermine : LHE

ZPL: Zielsetzungen

Finanz- u. Kostenrahmen : BP

ZPL: Aufgabenstellung

FMP: Abmessungen Maschine Lastenhefterstellung LHE

ZPL: Logistische Ziele

Aufgabenstellung : WSP,LHE Logistische Ziele : WSP,LHE

FMP: Bodenlast Lastenheft : SAP,ATP,TP,FRP,GAP,FAP,FIA,AWG,WVA,RTA,KAP

LMP: Anzahl Lagerplätze

ZPL: Projekttermine

PER/PTP: Anzahl Mitarbeiter

ZPL: Finanz- und Kostenrahmen

LHE: Lastenheft

Kubaturberechnungen : WSP, EP,BP Flächen- und Raumplanung FRP

LHE: Lastenheft

(1) Grundrissplan : VEP,EP,IAP,AP,VBL

LHE: Lastenheft

(2) Berechnungen : EP (3) Bemessungen : VEP, EP,IAP

FAP: Anschlusswerte der anderen technischen Gewerke

(5) Statisches Entwurfskonzept : EP

BSP: Brandschutzkonzept (6) Genehmigungsstatik : GP ATP: Design

Tragfähigkeit [kg/m²]

Starkstromanlagenplanung SAP

Behördliche Auflagen

(2) Berechnungen : EP,AP

ATP: Baumaterialien

(3) Bemessungen : VEP,EP,IAP,AP

ATP: Design

(4) Schemata : EP,AP,VBL

ATP: Ausstattungsstandard

(5) Schnittzeichnungen : VEP,EP,AP

ATP: Gebäudepläne

Planung der Abwasser-, Wasser-, Gasanlagen AWG

(6) Raumbuch : EP,AP,VBL

(4) Schemata : EP,VBL

ATP: Design

(5) Schnittzeichnungen : VEP, EP

ATP: Baumaterialien

(6) Entwässerungsplan : EP,GP

Bedarf an Park-, Lade- und Anlieferungszonen

Soziokulturelle Faktoren Infrastrukturelle Anbindung

WSP: Masterplan

Prüfung der Bebaubarkeit

SAW: Grundstück

IAP: Innenausbaupläne

(8) Raumbuch : EP,VBL

KAP,RTA,SAP,WVA: Schemata

Standortauswahl SAW

ATP: Design

Behördliche Auflagen

ATP: Baumaterialien ATP: Gebäudepläne

Fassadenplanung

(1) Gundrissplan : VEP,EP,IAP,VBL

BSP: Brandschutzkonzept ATP: Design ATP: Design

EDV-Bedarf ATP: Ausstattungsstandard

LHE: Lastenheft

(1) Grundrissplan : VEP,EP,IAP

LHE: Lastenheft

(2) Berechnungen : EP

BSP: Brandschutzkonzept

(3) Bemessungen : VEP,EP,IAP

ATP: Baumaterialien

LHE: Lastenheft

BSP: Brandschutzkonzept Informationstechnik

FIA

(4) Schemata : EP,VBL

ATP: Design

(5) Schnittzeichnungen : VEP,EP

ATP: Gebäudepläne

(6) Raumbuch : EP,VBL

ATP: Ausstattungsstandard

Planung der Wärmeversorgungsanlagen

Innere und äußere Wärmelast (3) Bemessungen : EP,IAP BSP: Brandschutzkonzept (4) Schemata : EP,VBL

WVA

Innenausbaupläne : EP,EBP

Planungsrecht Prozessseitige Restriktionen Materialfluss quantitativ, EP

ZPL: Zielsetzungen

Werksstrukturplanung

LHE: Lastenheft

Terminplanung

PST: Wertstrom Terminplan : VEP,EP PST: Fertigungssegmente

TP Masterplan : GBB, EP

WSP

PRG: Produktionsprogramm

Material- und Informationsf lussplanung MIP

Normen und Vorschriften Behördliche Vorgaben

ATP,SAP,FIA,FAP,GAP,AWG,WVA,RTA,KAP: Pläne

(3) Bemessungen : VEP,EP

(1) Anschlusswert : EP

(2) Entsorgungsgutachten : WSP,EP

GBB BSP: Brandschutzkonzept

(3) Entsorgungsbericht

LHE: Lastenheft

BSP: Brandschutzkonzept

(2) Grundrisse : VEP,EP,IAP

Förderanlagenplanung

LHE: Lastenheft

(3) Bemessungen : VEP,EP,IAP

FAP ATP: Design

(4) Raumbuch : EP,VBL

ATP: Design

XXX: Logistikkonzept

(1) Baumaterialien: VEP,EP,BP,FP,TWP, KAP,RTA,WVA,AWG,EBP Architektonische Planung ATP

XXX: Fertigungsprozesse

Budgetplanung BP

Budgetplan : EP

Normen und Vorschriften

Normen und Vorschriften

Behördliche Auflagen

Behördliche Auflagen

BP: Kostenrechnung FRP: Flächenberechnungen MIP: Materialfluss qualitativ

Vorentwurf Grundriss Vorentwurf Schnitte

FAP 2,3

Vorentwurf Ansichtenlageplan

GAP: Grundrissplan

Vorentwurf Vorbemessungen TGA

VEP

RTA 1,3,5 PRP: 1,2,3 EBP: Energiekonzept

BP: Budgetplan

FP: Fassadenpläne

TP: Terminplan

IAB: Innenausbaupläne

BSP: Brandschutzvorkonzept

AAP: Flächenbedarfe Außenanlagenplanung

Vorentwurfsplanung

ATP,SAP,FIA,FAP,GAP,AWG,WVA,RTA,KAP: Leistungsverzeichnis (EG)

EP: Entwurfspläne

Brandschutzplanung

Brandschutzkonzept : GP,IAP,GAP,FAP,FIA,SAP,AWG,WVA,RTA,KAP

Entwurfsplanung

Brandschutzvorkonzept : EP

BSP: Brandschutzkonzept

BSP

ATP,SAP,FIA,FAP,GAP,AWG,WVA,RTA,KAP: Schemata

(2) Datenpunktlisten : EP

Gebäudeautomationsplanung

Vorentwurf Kostenschätzung Vorentwurf Terminplan

MIP: Affinitäten FRP: Flächenberchnungen

PRP

TWP: Schalplan Entwurfspläne Grundriss

FIA: 1-6

FAP: 1-5

ATP: 1-4

GAP: 1-4

MIP: Materialfluss quantitativ

AWG: 1-8

MIP: Rest Materialfluss

WVA: 1-6

EP

AWG: Entwässerungsplan EP: Entwurfspläne RTA: Entwurfspläne RLTA

Entwurfspläne Kostenberechnung

AAP: 1-4 IT: EDV-Struktur

RTA: 1-6

Entwurfspläne Raumbücher

KAP: 1-6

Building material

TWP: Statisches Entwurfskonzept

PRP: 1-3

Design

Genehmigungsplanung GP

TWP: 3,6 Entwurfspläne Terminplan EBP: 3,4,5

Vorentwurf Raumbücher

TWP: Bewehrungsplan

BSP: Brandschutzkonzept

Entwurfspläne Schnitte

Entwurfspläne Ansichtenlageplan

Entwurfspläne Bemessungen TGA

Entwurfsplanung

Planning of the structural system Bauantrag

GP: Bauantrag

Genehmigungsverfahren

GV

(2) Anschlusswerte der Großverbraucher : VEP,EP,SAP

Formwork drawing

Location

SAP: 1-6

FRP: Kubaturberechnungen

Produktionsressourcenplanung

(4) Schemata : VBL

GBB: 1,2

Weight of resources

(1) Masse der Betriebsmittel : VEP,EP,TWP

(3) Grundrissplan : VEP,VBL

GAP

LHE: Lastenheft

(3) Ressourcenkatalog mit Abmessungen : ATP,VEP,EP

Reinforcement plans

TWP: Mengenliste SAP: Grundrissplan Baugenehmigung

SAP:Berechnungen SAP: Bemessungen SAP: Schemata SAP: Schnittzeichungen SAP: Raumbuch

Ausführungs planung

Ausführungsplanung

Position plans AP

Quantity list Structural design proposal

Building plan

Structural calculations

Equipment standard

Figure 10: Planning modules of condition based planning for industrial planning [21]

12

Vergabe Bauleistungen

ATP,SAP,FIA,FAP,GAP,AWG,WVA,RTA,KAP: Raumbuch

ATP: Design

Schemata

Baurechtliche Restriktionen

WSP: Masterplan

WVA 1,5,6

ATP,SAP,FIA,FAP,GAP,AWG,WVA,RTA,KAP: Funktionsbeschreibung (GU)

Produktionsprogramm (-planung)

(1) Raumbuch : VBL

Property

(3) Gebäudepläne : VEP,EP,FP,TWP,KAP,RTA,WVA,AWG,EBP

ATP: 1 - 4

AWG: 1,5,3

(7) Raumbuch : VBL

ATP: Baumaterialien

TP: Terminplan

FIA 1,5,3

(6) Entwurfspläne RLTA : EP,GP

ATP: Gebäudepläne

Kostenrechnung : IAP, VEP

(2) Design : VEP,EP,IAP,FP,TWP,SAP, FIA,FAP,GAP,KAP,RTA,WVA,AWG,EBP

SAP: 1,5,3

(5) Schnittzeichnungen : VEP,EP

RTA

ATP: Baumaterialien

(4) Ausstattungsstandard : VEP,EP,IAP, TWP,KAP,RTA,WVA,AWG

FP: Fassadenpläne

Projektmanagement, Verfahren und Entwurfsplanung

(4) Schemata : EP,VBL,EBP Planung der Raumlufttechnischen Anlagen

ATP: Ausstattungsstandard

(5) Schemata : EP,VBL ZPL: Finanz- und Kostenrahmen

PRP: Ressourcenkatalog mit Abmessungen

(2) Berechnungen : EP

(1) Baugrundgutachten : WSP,EP

Gründungsund Bodenbelastung

Gesetzliche Vorgaben Katalog mit Abmessungen

FRP: Kubaturberechnungen

(1) Grundrissplan : VEP,EP,VBL

Normen und Vorschriften

WSP: Masterplan

Behördliche Auflagen

FRP: Flächenberechnungen

(6) Raumbuch : KAP,VBL

Katasterplan/Flurkarte

opt. Materialflussmatrix ideales Funktionsschema

AAP: Flächenbedarfe Außenanlagen

LHE: Lastenheft

(5) Schnittzeichnungen : KAP

Materialfluss qualitativ : VEP

Affinitäten/Beziehungen : WSP,EP

MIP: Affinitäten

(3) Bemessungen : KAP,IAP (4) Schemata : KAP,VBL,EBP

ATP: Gebäudepläne ATP: Ausstattungsstandard

AWG,WVA,SAP,FIA,FAP,RTA,KAP: Bemessungen

ZPL: Projektdefinition

KAP

ATP: Baumaterialien (6) Raumbuch : VEP,EP,VBL

AWG,WVA,SAP,FIA,FAP,RTA,KAP: Grundrisse

IT

ZPL: Aufgabenstellung

(2) Berechnungen : KAP Planung der Kälteanlagen für RLTAnlagen

ATP: Design (5) Schnittzeichnungen : VEP, EP

Innenausbau - planung IAP

EDV-Struktur: EP

(1) Grundrissplan : EP,IAP,VBL

(2) Berechnungen : EP

Planung der Fernmeldeund Informationstechnischen Anlagen

BP: Kostenrechnung

FRP: Kubaturberechnungen

(4) Schallschutznachweis : GP

Normen und Vorschriften

Fassadenpläne : EP, EBP

FP

Grundstück : AAP,TWP

Grundstückspreis

GBB: Baugrundgutachten

FRP: Flächenberechnungen

(3) Thermische Simulation : GP

(5) Raumakkustiknachweis : GP

Normen und Vorschriften

Normen und Vorschriften

Beleuchtung : EP

AAP

FRP: Flächenberechnungen

Standort : ZPL,LHE,TWP

EBP

EP: Entwurfsplanung

Drainage/Entwässerung : VEP,EP

Außenanlagenplanung

Arealsicherheit : EP

Prüfung des Planungsrechts

(1) Energiekonzept : VEP (2) Nachweis der Einhaltung ENEV EnergieBauphysikplanung

ATP: Gebäudepläne

(7) Entwässerungsgesuch : EP

Gesetzliche Vorgaben Flächenbedarfe Außenanlagenplanung : WSP,VEP,EP

GBB: Entsorgungsgutachten

ZPL: Logistische Ziele

FP: Fassadenpläne

(4) Mengenlisten : AP

TWP

ATP:Ausstattungsstandard

Flächenberechnungen : WSP,VEP,EP,BP,AAP

Standortbewertung

Potentiale des Grundstücks

BSP: Brandschutzkonzept

(3) Positionsplan : GP

Tragwerksplanung

Kennzahlen

SAW: Standort

Informationsplanung

A19

Personalaufwand

Bedarfsschwankungen

A2

Werkstoff/Material

Stapelbarkeit

ERP/PPS-System

Unbebaute Flächen

A13

Abmessungen FM/AP Anschlusswerte FM/AP

Produktionsprogramm

Produktionsprogrammplanung

Referenzprodukte

Unternehmensstrategie

Dauer

MES

Maschinenbelegungszeit

A5

Höhe K

Zeitpun

Investition Grundstück

Prioritätsregeln

Losgröße

Produktprogramm

Lieferzeit je Produkt kapazitive Restriktionen

Empfindlichkeit

Verkehrsflächen

A16

Investitionskosten Bau Finanz- u. Kostenrahmen

Fertigungssteuerung

Kapazitätsbedarfsprofil

Kapazitätsbedarfsplanung

Stückzahlszenario Bedarfsschwankungen

Absatzprognosen

Funktionsflächen A18

Flächen- und Raumplanung

Transportmittel

Wartungszeiten

PPS-Planung Nebennutzflächen

Betriebs-/Wartungskosten

Produktionslosgröße

V.u. E.-Systeme

Produktionsprogramm

Lagerbestand

Kundenentkopplungspunkt

Lagerfläche

Ausfallraten

A7

Kapazitätsbedarfsprofil Maschinenbelegungszeit

A6

Tabelle Bearbeitungszeit

Arbeitsplan

Vergangenheitsdaten

Dimension

Tabelle Rüstzeit

Verfügbarkeit Mitarbeiter

gef. Sicherheitsbestand

Investitionsplanung

Invest. Transportmittel

Arbeitstage pro Jahr

VBL GU: Generalunternehmer EG: Einzelgewerk

Vergabeentscheidung

3.1.3. Informational linking of production system and industrial building planning After modularization of the planning processes for the production system and the industrial building, the informational interfaces between the two disciplines are defined in a next step (Figure 11). Thereto, all information is examined resulting of a module and being a planning basis for processing a module of the other discipline. E.g. required floor space would result from the planning module “layout planning” and be necessary to conduct the “architectural planning” of the industrial building. Initiative U/B- Leitung Projektidee

Stückzahlszenario

Materialfluss quantitativ

Produktionsprogramm Unternehmensziele

Maschinenliste

Werkstoff

Technologieplanung

Gewicht

A3

Toleranzen

Affinitätsmatrix FM/AP

Technologiealternativen erf. Anlagenparameter Prozessketten Produktionsablaufplan Technologieverträglichkeit

Referenzprodukte

Bedürfnis / Problem

Lieferzeit je Produkt [d]

Fertigungsverfahren

Konstruktionszeichnung

Technologiealternativen

Geometrie Unternehmensziele

Beziehungsmatrix opt. Materialflussmatrix ideales Funktionsschema

A9

Ist-Layout

Fertigungsverfahren

Geometrie Stückliste

Losgröße

Einzelprozesse

Konstruktionszeichnung

Unternehmenspotential

Materialflussplanung

Arbeitsplan

Terminketten Finanz- u. Kostenrahmen

A0

Materialfluss qualitativ

Technologieverträglichkeit

Unternehmensstrategie

Zielplanung

Prozessketten

Stückliste

Produktplanung

Kundenentkopplungspkt

Prozessplanung

Auftragsabwicklung

Lieferzeit je Produkt

Gewicht [kg]

A1

Arbeitsplan

Produktionsablaufplan

Werkstoff/Material

Unternehmensstrategie

Tabelle Rüstzeit

Toleranzen

Maschinenpuffer

A4

Tabelle Bearbeitungszeit

Zielkosten [€]

Maschinenliste

Empfindlich-, Stapelbarkeit Produktprogramm

Arbeitsstunden je Schicht Arbeitstage pro Jahr

Tabelle Rüstzeit

Schichtbetrieb Verfügbarkeit Mitarbeiter

Tabelle Bearbeitungszeit

Fertigungsverfahren

Zeitnutzungsgrad BM

Maschinenliste

Einzelprozesse

Anforderungsprofil MA

Technologiealternativen Kapazitätsbedarfsprofil Maschinenbelegungszeit

Stückzahlszenario Bedarfsschwankungen

Kundenaufträge

Investitionskosten FM Betriebs-/Wartungskosten Ausfallraten

A7

Kapazitätsbedarfsprofil

Wartungszeiten

Maschinenbelegungszeit

Produktionsprogrammplanung

Flächen- und Raumplanung A13

Funktionsflächen Verkehrsflächen Unbebaute Flächen

Maschinenliste

erforderte Raumhöhe [m]

Bodenlast

Flächen für Erweiterung

Tragfähigkeit [kg/m²]

A5

Stückzahlszenarien Bedarfsschwankungen

A2

Unternehmensstrategie

Kundentakt Zulieferaufträge

opt. Materialflussmatrix

Maschinenliste

ideales Funktionsschema

Personalbedarfsplan

Anforderungsprofil MA

Kapazitätsbedarfsprofil

Affinitätsmatrix PM/AP

Anzahl Mitarbeiter

Maschinenarbeitsplatzfl.

Einsatzpunkt MA

Personalplanung

Hauptnutzflächen

Qualifikationsprofil MA

Personalaufwand

Stapelbarkeit

Hauptnutzflächen Nebennutzflächen

Lagerfläche Transportmittel

Personalaufwand

Losgröße

Nebennutzflächen

Aufbauorganisation

A8

verf. Arbeitszeit je MA

A10

Layout

A15

Verkehrsflächen Unbebaute Flächen

Ladungsträger

Ladungsträgerplanung

Layoutplanung

Funktionsflächen

Personalkosten

Ladeeinheit

Gewicht

Transportmittel

Maschinenarbeitsplatzfl.

Lagereinrichtung

Kapazitätsbedarfsprofil Maschinenbelegungszeit

Geometrie

Empfindlichkeit

Anzahl Mitarbeiter

Abmessungen FM/AP

Produktionsprogramm

Werkstoff/Material

Produktionslosgröße

Stückzahlszenario

Anzahl Lagerplätze

Transportweg (B[m])

Abmessungen FM/AP Anschlusswerte FM/AP

V.u. E.-Systeme

Kapazitätsbedarfsplanung

Kundentakt

Absatzprognosen

Produktprogramm Referenzprodukte

verf. Maschinenzeit je PM

verf. Arbeitszeit je MA

Bodenlast

Produktionsprogramm

Lagerbestand Vergangenheitsdaten

Lieferzeit je Produkt

verf. Maschinenzeit je PM

A6

Arbeitsplan

gef. Sicherheitsbestand

kapazitive Restriktionen

Fertigungsmittelplanung

erf. Anlagenparameter

Kapazitätsangebotsplanung

Personalaufwand

Lagereinheit

Flächen für Erweiterung

Arbeitsplan

Informationsfluss

Transporteinheit

Maschinenpuffer

Abmessungen Ladeeinheit

Stückzahlszenario

Losgröße Ladungsträger

Ladungsträger

Lagertechnik

V. und E.-Netze Lagertechnik Anzahl Lagerplätze

Lager- und Pufferplanung

Lagereinheit Ausfallraten Wartungszeiten

Lagerfläche

A11

Lieferzeit je Produkt

Investition Lagertechnik Anforderung Baukonstr.

Wiederbeschaffungszeit

Medienbereitstellung Anschlusswerte FM/AP

Medienplanung

Layout Produktionprogramm

V. und E.-Systeme V. und E.-Netzt

A14

Transportmittel/-system

Stückzahlszenario

Investitionskosten V. u. E.

Anzahl Transportmittel

Ladungsträger

Transportplanung

Transporteinheit Materialfluss quantitativ Materialfluss qualitativ Layout

A12

Transportweg (B[m]) Anforderung Baukonstr. Abmessung Transportm. Invest. Transportmittel Betriebs-/Wartungskosten

Investitionskosten V. u. E. Investitionskosten FM

Layout

Personakosten

V. u. E.-Netz

Investitionsentscheidung

Investition Lagertechnik

Investitionsplanung

Invest. Transportmittel Betriebs-/Wartungskosten

A16

Investitionskosten Bau

A18

Gebäudegrundriss

Nebennutzflächen Funktionsflächen

Dauer Kapitalbindung

Verkehrsflächen unbebaute Flächen

Investition Grundstück

PPS-Planung

Bebauungsplan

Hauptnutzflächen

Höhe Kapitalbedarf [€] Zeitpunkt Kapitalbedarf

Finanz- u. Kostenrahmen

Kundenentkopplungspunkt

Flächen für Erweiterung

Gebäudeform

Gebäudeplanung A17

Gebäudekonstruktion Tragwerk Innenausbau Verkehrsanbindung

erforderte Raumhöhe

Gebäudetechnik

Produktionslosgröße

Tragfähigkeit [kg/m²]

Investitionskosten Bau

Fertigungssteuerung

Anforderungen Baukonstr.

Prioritätsregeln MES ERP/PPS-System

Informationsfluss Visuelles Management MES ERP/PPS-System

Informationsplanung A19

Leitstände Plantafeln BDE/MDE-Erfassung Kommunikationssysteme

Figure 11: Informational linkage of production system and industrial building planning

The result is a static interaction model creating transparency on all planning tasks and processes as well as all information flows required. Impacts of changes in planning criteria can thus be traced directly and affected planning tasks can be iterated. Another advantage is the ability to carry out an integrative configuration of factory design projects including the construction of the industrial building and the planning of the production system.

3.2. Interaction model of digital planning The interaction model of digital planning ensures the integration of digital tools of production system and industrial building planning. The aim is to prevent information losses and to reduce transformation effort. Therefore, digital planning tools suiting the requirements of the planning task in terms of complexity have been defined for each planning module. For example, the solution space is still very large in a very early project stage. Therefore, simple 13

planning tools (e.g. MS Powerpoint or MS Visio-based) can be used for designing true to scale 2D-blocklayouts. In a later planning phase, when the solution space is smaller and the planning gets more detailed, more sophisticated software tools can be applied for layout design (e.g. 3D-layout design tools). The use of planning tools with an appropriate level of complexity helps focussing on value adding planning tasks. However, it is necessary to ensure re-usage of planning results in a later project stage. For cross-linking commercially available and/ or proprietarily developed software tools, a concept has been developed enabling the transfer of results between different planning tools without data losses and few transformation effort. For this, each digital planning tool has a program-specific developed converter that links the tool to a common data management system (backbone) serving for all data exchange. The system has been developed within the research project “VFF – Virtual Factory Framework” that was funded by the European Union and has been described in more detail in several publications [22].

3.3. Dynamic interaction model The static interaction model provides transparency regarding the planning tasks and the necessary flow of information between the planning modules. However, there is no information about the temporal dimension. Therefore, the planner does not know at what point in time he has to deliver which information in what level of maturity. Especially in the dynamic environment of factory planning projects, planning fundamentals change so frequently that a continuous adaptation of the project plan cannot be ensured on information level. At the same time, the project leader of complex factory planning projects is not able to coordinate all information flows between the planners due to the cognitive limitation of human beings. A shift from traditional system-oriented project management systems is required. Therefore, a dynamic interaction model has been designed referencing on elements from agile software development (e.g. Scrum, Extreme Programming) [23, 24]. The target is 14

to develop an agile project management system for integrative factory design projects that organizes the exchange of information within a planning project in an efficient, dynamic and flexible way. By this, the dynamic interaction model reduces idle time of planners in the planning process. It also enables the reduction of planning errors caused by a lack of information and the reduction of the coordination effort of planning participants. The necessity and the basic principle of an agile project management system for complex factory design projects has been derived in the first phase of the cluster of excellence “Integrative Production Technology for High Wage Countries” and is going to be detailed within the second funding period.

3.4. Interim conclusion The eight requirements to efficient interaction models outlined in chapter 2.3 can be fulfilled in accordance to Figure 12 by the three presented interaction models. The static interaction model modularizes the planning process and defines informational links between input and output information of the planning modules. Therefore, the static interaction model creates transparency for the project coordinator and understanding for all planning participants. As the static interaction model shows all interactions between planning modules, impacts of changes are visualized and hence transparent. Condition based factory planning permits an easy adaptation of the planning procedure what allows the integration of changes with little effort. The interaction model of digital planning connects the software tools used during the planning process. As it links software tools with different degrees of complexity and from different disciplines, the loss of information and the effort to transform planning results are reduced. The dynamic interaction model ensures that the planners exchange the right information at the right maturity level at the right point in time. Therefore, the information gets automatically

15

filtered, the information flow and maturity levels are synchronized, losses of information are reduced and changes can be integrated in the existing planning results with little effort. 1. Create transparency 2. Create understanding

1. Static interaction model

Requirements

3. Filter information 2. Interaction model of digital planning

4. Synchronize information flow 5. Reduce loss of information

3. Dynamic interaction model

6. Reduce transformation efforts 7. Synchronize maturity levels 8. Integrate changes with little effort

Figure 12: Fulfillment of the requirements by the outlined interaction models

4. Summary The complexity in factory design projects is growing due to an increasing specialization and interdisciplinarity within the planning team. A rising complexity causes an above average growth of the coordination costs within a project. If a certain level of complexity is exceeded coordination costs rise too high and a successful project conclusion is not possible anymore. Therefore, coordination costs need to be lowered significantly by efficient interaction models. The static interaction model modularizes the planning process, defines input and output data required to carry out the planning tasks within the modules and interconnects the planning modules. This increases transparency and enables a flexible configuration of the planning process. The interaction model of digital planning links software tools with different degrees of complexity and reduces data losses as well as transformation effort. The third model is the dynamic interaction model that builds up on agile software development methods in order to exchange the right information between the planners in the correct level of maturity at the 16

right point in time. The development of the models will be detailed in future research work and applied in an industry case.

Acknowledgement: The new approach of CBFP is being investigated by the Laboratory of Machine Tools and Production Engineering (WZL) within two publicly funded research and development projects (German Research Foundation, DFG): the "Cluster of Excellence - Integrative Production Technology for High Wage Countries” and the Graduiertenkolleg 1491/1 (University graduate training programme) “Interdisciplinary Ramp-Up”. The building design and construction process is studied in the publicly funded research and development project (State of North Rhine-Westphalia, NRW.BANK Ziel2): “Services in the industrial building design and construction process”.

[1] Wiendahl H-P, Reichardt J, Nyhuis P (2009) Handbuch Fabrikplanung. Konzept, Gestaltung und Umsetzung wandlungsfähiger Produktionsstätten. Hanser, München. [2] Deutsche Post AG (2010) Delivering Tomorrow. Zukunftstrend Nachhaltige Logistik. 1st Ed. Deutsche Post AG, Bonn. [3] AT Kearney (2011) Carbon Disclosure Project. Supply Chain Report 2011. Migrating to a low carbon economy through leadership and collaboration. Carbon Disclosure Project. [4] Schuh G. (2005) Produktkomplexität managen. Strategien. Methoden. Tools. Hanser, München. [5] Westkämper E, v. Briel R, März L (1997) Planung in dynamischen Produktionssystemen Wandlungsfähigkeit als Wettbewerbsvorteil. ZWF 92/12:639-642. [6] Schuh G, Franzkoch B; Burggräf P; Nöcker J; Wesch-Potente C (2009) Configurable planning processes for factory planning. wt Werkstattstechnik online 99/4:193-198. [7] Aggteleky B (1987) Fabrikplanung - Werksentwicklung und Betriebsrationalisierung, Bd 1 - Grundlagen, Zielplanung, Vorarbeiten. Hanser, München. [8] Tompkins J A et al. (2010) Facilities Planning. Wiley, Hoboken.

17

[9] Kettner H, Schmidt J, Grein H R (1984) Leitfaden der systematischen Fabrikplanung. Hanser, München. [10] NA (2007) AIA document B101-2007. [11] NA (2007) RIBA Outline Plan of work. http://www.architecture.com/Files/RIBA ProfessionalServices/Practice/OutlinePlanofWork%28revised%29.pdf. Accessed January 21, 2012. [12] NA (2009) HOAI - the official scale of fees for services by architects and engineers. http://www.hoai.de/online/HOAI_2009/HOAI_2009.php. Accessed January 21, 2012. [13] NA (2011) VDI 5200: Factory Planning - Planning procedures. [14] Dreier F (2001) Nachtragsmanagement für gestörte Bauabläufe aus baubetrieblicher Sicht. Diss. Cottbus. [15] Ahlers G. M. (2006) Organisation der integrierten Kommunikation. Entwicklung eines prozessorientierten Organisationsansatzes. Gabler, Wiesbaden. [16] Emery F.E. (1969) Systems thinking: selected readings. Penguin, New York. [17] Markert B., Fraenzle S., Tieben C. (2009) Information und Informationsverarbeitung. Teil 2: Das Internet und die Pflege emotionaler Intelligenz. Umweltwissenschaften und Schadstoff-Forschung 21/5: 483-486. [18] Schuh G, Bergholz M (2003) Collaborative Production on the Basis of Object Oriented Software Engineering Principles. Annals of the CIRP 52/1:393-396. [19] Schuh G, Kampker A, Wesch-Potente C (2011) Condition based factory planning. Production Engineering 5/1:89-94. [20] Schuh G. et al. (2012) Virtual Production Systems. In: Brecher C. (Ed.) Integrative Production Technology for High-Wage Countries. Springer, Heidelberg. [21] Schuh G. et al. (2011) Condition based planning for processes, resources and industrial buildings. In: Correa E. (Ed.) Proceedings of the 22nd Annual Conference of the 18

Production and Operations Management Society, POMS 22nd Annual Conference RenoOperations Management: The Enabling Link.”, Nevada, U.S.A., April 29 to May 2, 2011. [22] Sacco M. et al. (2011) Virtual Factory Manager. In: Shumaker, R. (Ed.) Virtual and Mixed Reality. Systems and applications. Lecture Notes in Computer Science 6774/2011: 397-406. [23] Schwaber K., Beedle M. (2001) Agile software development with scrum. Prentice Hall, Upper Saddle River, NJ. [24] Beck K. (2000) Extreme Programming Explained. Embrace Change. Addison Wesley, Reading, MA.

19