Jun 15, 2017 - Filtered-OFDM Processing for 5G. Juha YLI-KAAKINEN, Toni LEVANEN,. Markku RENFORS, and Mikko VALKAMA. Laboratory of Electronics ...
European Conference on Networks and Communications (EuCNC’2017)
Physical Layer and Fundamentals (PHY)
Optimized Fast Convolution Based Filtered-OFDM Processing for 5G Juha YLI-KAAKINEN, Toni LEVANEN, Markku RENFORS, and Mikko VALKAMA Laboratory of Electronics and Communications Engineering, Tampere University of Technology, FINLAND
June 15, 2017
.
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
.
.
.
.
.
.
.
.
.
.
Introduction Fast-convolution (FC) filtering schemes provide flexible and effective waveform generation and processing in the fifth generation (5G) systems
OFDM OFDM MODULATOR MODULATOR
Tx 20
FC FC PROCESSING PROCESSING Synthesis Synthesis filter filterbank bank
OFDM OFDM MODULATOR MODULATOR
Rx FC FC PROCESSING PROCESSING Analysis Analysis filter filterbank bank
OFDM OFDM DEMODULATOR DEMODULATOR OFDM OFDM DEMODULATOR DEMODULATOR
Analysis bank MSE on active subcarriers
1x12 SCs with 30 kHz SCS
0
Power in dB
OFDM OFDM MODULATOR MODULATOR
6x12 SCs with 60 kHz SCS
−20
24x12 SCs with 15 kHz SCS
−40 −60 −80 −500
−400
−300
−200
−100
0
Subcarrier n
OFDM OFDM DEMODULATOR DEMODULATOR .
J. Yli-Kaakinen, T. Levanen, M. Renfors, and M. Valkama
100
.
.
.
.
.
. . . .
200
. . . .
300
. . . .
. . . .
400
. . . .
. . . .
Optimized Fast Convolution Based Filtered-OFDM Processing for 5G
.
500
.
.
.
.
.
.
.
.
2
.
Fast Convolution ▶
Fast convolution processing is an efficient implementation of high-order time-domain filters in frequency domain ▶ ▶
▶
Replace time-domain convolution with frequency-domain multiplication Overlap-and-save (OSA) processing is used with long sequences
Implementation complexity can be fine tuned by relaxing the correspondence between the time-domain and frequency-domain models ▶
Exact representation possible, but not optimal from computational complexity – performance trade-off perspective
.
J. Yli-Kaakinen, T. Levanen, M. Renfors, and M. Valkama
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
Optimized Fast Convolution Based Filtered-OFDM Processing for 5G
.
.
.
.
.
.
.
.
.
3
.
Fast Convolution – Overlap-and-Save Processing Input signal OVERLAP OF 20 %
Input block 1 OVERLAP OF 20 %
OVERLAP OF 20 %
Input block 2 OVERLAP OF 20 %
Processing
OVERLAP OF 20 %
Input block 3
OVERLAP OF 20 %
Processing THROW AWAY
Output block 1 THROW AWAY
THROW AWAY
Processing
Output Block 2 THROW AWAY
THROW AWAY
Output Block 3
Output signal
THROW AWAY
■ Input signal is divided into overlapping blocks (e.g. with 40% overlap) ■ Blocks are transformed to frequency-domain for processing (filter) ■ Processed blocks are transformed back to time-domain for concatenation .
J. Yli-Kaakinen, T. Levanen, M. Renfors, and M. Valkama
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
Optimized Fast Convolution Based Filtered-OFDM Processing for 5G
.
.
.
.
.
.
.
.
.
4
.
Fast Convolution – Overlap-and-Add Processing Input signal INSERT ZEROS
Input block 1 INSERT ZEROS
INSERT ZEROS
Input block 2 INSERT ZEROS
Processing
INSERT ZEROS
Input block 3
INSERT ZEROS
Processing OVERLAP & ADD
Output block 1 OVERLAP & ADD
OVERLAP & ADD
Processing
Output Block 2 OVERLAP & ADD
OVERLAP & ADD
Output Block 3
Output signal
OVERLAP & ADD
■ We use the overlap-and-save because of its better properties in finite wordlength implementation ■ This is due to the possible transients at the beginning and end of each overlap-add processing block
.
J. Yli-Kaakinen, T. Levanen, M. Renfors, and M. Valkama
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
Optimized Fast Convolution Based Filtered-OFDM Processing for 5G
.
.
.
.
.
.
.
.
.
5
.
Fast Convolution – Synthesis Filterbank Tx Processing Input signal x0
Input signal x1
Input signal xM –1
Serial to parallel with LO,0 overlap
Serial to parallel with LO,1 overlap
Serial to parallel with LO,M –1 overlap 0 0
L0-point FFT
L1-point FFT
LM –1-point FFT
d0
d1
dM –1
N-point IFFT
Parallel to serial with NO = N – NS sample discard
■ Low-rate narrowband subchannels are combined into a high-rate wideband channel ■ The bandwidth and the shape of the subchannels can be adjusted by modifying the weight masks dm ’s ■ Subband signals are detectable with basic OFDM receiver
Output signal y .
J. Yli-Kaakinen, T. Levanen, M. Renfors, and M. Valkama
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
Optimized Fast Convolution Based Filtered-OFDM Processing for 5G
.
.
.
.
.
.
.
.
.
6
.
Fast Convolution – Analysis Filterbank Rx Processing Input signal x Serial to parallel with NO = N – NS sample overlap
N-point FFT d0
d1
dM –1 0
0
L0-point IFFT
L1-point IFFT
LM –1-point IFFT
Parallel to serial with LO,0 discard
Parallel to serial with LO,1 discard
Parallel to serial with LO,M –1 discard
Output signal y0
Output signal y1
Output signal yM –1
■ High-rate wideband channel is divided into low-rate narrowband subchannels ■ N in synthesis and analysis filterbanks don’t have to be equal ■ The subcarrier-wise channel equalizer coefficients can be combined with the weight masks dm ’s .
J. Yli-Kaakinen, T. Levanen, M. Renfors, and M. Valkama
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
Optimized Fast Convolution Based Filtered-OFDM Processing for 5G
.
.
.
.
.
.
.
.
.
7
.
Matrix Model for FC Processing – Synthesis Filterbank m Fm,r = SN W−1 N Mm,r Dm PLm
(L /2)
dL m−1, m
SN
Parallel-to-serial
FFT shift
d1, m
–1
Overlap-save processing (N O sample discard)
Dm
WN
N-point IFFT
PL(Lmm/2)
d0, m
L m-point FFT
Serial to parallel with L O,m overlap
W Lm
Common TX FC processing for all subbands
Mm,r
Mapping L m frequency-domain points to N points
Single subband of FC based TX processing
WLm
.
J. Yli-Kaakinen, T. Levanen, M. Renfors, and M. Valkama
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
Optimized Fast Convolution Based Filtered-OFDM Processing for 5G
.
.
.
.
.
.
.
.
.
8
.
Matrix Model for FC Processing – Analysis Filterbank Similarly for analysis filterbank Gm,r = S¯Lm W¯−1 P Lm N
(N/2)
⊺
Dm Mm,r WN
In our approach FC design is done in frequency-domain by optimizing the weight coefficients embedded in Dm ▶ Two symmetric transition bands with non-trivial weights (very low memory requirement) ▶ All passband weights are 1 ▶ All stopband weights are 0 .
J. Yli-Kaakinen, T. Levanen, M. Renfors, and M. Valkama
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
Optimized Fast Convolution Based Filtered-OFDM Processing for 5G
.
.
.
.
.
.
.
.
.
9
.
FC-F-OFDM
▶
FC filtered CP-OFDM/DFTs-OFDM (FC-F-OFDM) is a scheme where the FC processing is used to implement highly adjustable and computationally efficient subband filtering for CP-OFDM or DFTs-OFDM signals
.
J. Yli-Kaakinen, T. Levanen, M. Renfors, and M. Valkama
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
Optimized Fast Convolution Based Filtered-OFDM Processing for 5G
.
.
.
.
.
.
.
.
.
10
.
FC-F-OFDM (processing structure for one filtered group of PRBs) Single subchannel of FC based TX processing
OFDM TX processing
Common FC TX processing for combining all subchannels
x OFDM,m
f t
FD windowing d0,m
Overlap-save(OSA) (OSA)processing processing Overlap-save withNN L L + N + N T T = λN = λN overlap overlap with
0
d1,m
N-pointIFFT IFFT N-point
-pointFFT FFT LL m m-point
S/Pwith withLLL,m overlap L,m + L + LT,m T,moverlap S/P
X 0,m xx X 1,m xx xx X Lact−1,m xx 0
Parallelto toserial serial(P/S) (P/S) Parallel
xx xx xx xx
InsertLLCP,m -pointCP CP CP,m-point Insert
0 -pointIFFT IFFT OFDM,m-point LLOFDM,m
Input OFDM symbols X m
0
dL m−1,m
x CP-OFDM,m Lact,0
− Interpolation factor: N/Lm = NS/LS,m
FD window
Lact,1 FD window
Lact,2 FD window
Discrete frequency axis with N frequency-domain points. The number of active subcarrier Lact,m can be different for each subband. .
J. Yli-Kaakinen, T. Levanen, M. Renfors, and M. Valkama
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
Optimized Fast Convolution Based Filtered-OFDM Processing for 5G
.
.
.
.
.
.
.
.
.
11
.
FC-F-OFDM – PSDs of Fullband Filtered OFDM
40
40
20
20
0
Power in dB
Power in dB
Optimization based on minimizing the inband MSE (or EVM) given the attenuation target at the end of transition band
0
−20
−20
−40
−40 −60 −80 −500
−400
−60 −312 −300 −200
−306 −100
−300 −294 0 100 200
400
−40
−80 −500
500
−306 −100
−300 −294 0 100 200
Subcarrier n
(a)
(c)
300
400
500
Figure: 40-dB attenuation target 20
Analysis bank EVM on active subcarriers
0
B
0
B
−400
−60 −312 −300 −200
Subcarrier n
J. Yli-Kaakinen, T. Levanen, M. Renfors, and M. Valkama
CP−OFDM signal Synthesis bank Transmitted signal
−60
Figure: 20-dB attenuation target 20
0 −20 −40
CP−OFDM signal Synthesis bank Transmitted signal
300
0 −20
.
.
.
.
. . . .
.
.
. . . .
Analysis bank EVM on active subcarriers
. . . .
. . . .
. . . .
. . . .
Optimized Fast Convolution Based Filtered-OFDM Processing for 5G
.
.
.
.
.
.
.
.
.
12
.
−40
FC-F-OFDM – PSDs of Filtered Groups of PRBs
CP−OFDM signal Synthesis bank Transmitted signal
−60
Supports flexible spectrum allocations and adjustable subcarrier spacings Subcarrier n −80 −500
−400
−300
−200
−100
0
100
20
200
300
400
500
Analysis bank MSE on active subcarriers
1x12 SCs with 30 kHz SCS
Power in dB
0 6x12 SCs with 60 kHz SCS
24x12 SCs with 15 kHz SCS
−20 −40 −60 −80 −500
−400
−300
−200
−100
0
100
200
300
400
500
Subcarrier n
Figure: Three RBGs of Nact = {12, 72, 288} active subcarriers with subcarrier spacing of {30, 60, 15} kHz, respectively. .
J. Yli-Kaakinen, T. Levanen, M. Renfors, and M. Valkama
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
Optimized Fast Convolution Based Filtered-OFDM Processing for 5G
.
.
.
.
.
.
.
.
.
13
.
FC-F-OFDM Performance with optimized transition band weights Average EVM
Worst−case EVM
−10
−10 λ = 1/4 λ = 1/2
As = 40 dB As = 30 dB
−14
As = 20 dB
QPSK
As = 10 dB −18
16−QAM
−22
EVM in dB
EVM in dB
−18
−14
64−QAM
−26
−22
−26
−30
−30
−34 256−QAM
−34
−38
1
3
5
7
−38
1
3
5
Transition band bins
Transition band bins
(c)
(d)
7
Figure: Isolated group of 4 PRBs with both Tx and Rx filtering .
J. Yli-Kaakinen, T. Levanen, M. Renfors, and M. Valkama
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
Optimized Fast Convolution Based Filtered-OFDM Processing for 5G
.
.
.
.
.
.
.
.
.
14
.
FC-F-OFDM Complexity Table: Rx MSE versus complexity No. active subcarriers
Overlap factor λ
4 PRBs
1/2 1/4
50 PRBs 12×4 PRBs
Rx complexity (muls/MC-symbol)
Rx complexity (muls/symbol)
Rx complexity relative to OFDM
17 302 11 758
360.46 244.96
×2.41 ×1.64
1/2 1/4
38 468 28 131
64.11 46.89
×5.36 ×3.92
1/2 1/4
35 430 25 774
61.51 44.75
×4.94 ×3.59
Table: Corresponding FIR realization complexity for the 50 PRB case FIR filter length
Rx complexity (muls/MC-symbol)
Rx complexity relative to OFDM
50
51 200
×7.14
100
102 400
×14.28
150
153 600
×21.42
■ The FC filtering complexity is defined by the number of FC processing blocks, subband bandwidth, and number of filtered subbands. ■ To minimize complexity ▶
reducing overlap reduces the number of FC processing blocks
▶
minimizing small transform size with respect to the subband size reduces related complexity .
J. Yli-Kaakinen, T. Levanen, M. Renfors, and M. Valkama
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
Optimized Fast Convolution Based Filtered-OFDM Processing for 5G
.
.
.
.
.
.
.
.
.
15
.
Performance Comparison Case 1a, 55 PRBs in 10 MHz channel, spectral localization example 25
25
20
20
15
15 10
PSD [dBm/30 kHz]
PSD [dBm/30 kHz]
10 5 0 −5 −10
LTE OOBEM 30 kHz FC-F-OFDM, 3 bin TBW, As = 30 dB FC-F-OFDM, 2 bin TBW, As = 30 dB
−20
FC-F-OFDM, 2 bin TBW, As = 10 dB −25 −5.06
−5.04
−5.02
−5
−4.98
−4.96
−4.94
0 −5 −10 −15
FC-F-OFDM, 4 bin TBW, As = 40 dB
−15
5
−4.92
Frequency offset from 4 GHz center frequency [MHz]
−20
LTE OOBEM 30 kHz FC-F-OFDM, 2 bin TBW, As = 10 dB, meas BW 30 kHz f-OFDM, TO = 0, meas BW 30 kHz WOLA, Nws = 72, meas BW 30 kHz
−25 −30 −5.06
−5.04
−5.02
−5
−4.98
−4.96
−4.94
−4.92
Frequency offset from 4 GHz center frequency [MHz]
EVM: FC-F-OFDM 0.8 %, f-OFDM 1.1 %, and WOLA 0.7 % .
J. Yli-Kaakinen, T. Levanen, M. Renfors, and M. Valkama
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
Optimized Fast Convolution Based Filtered-OFDM Processing for 5G
.
.
.
.
.
.
.
.
.
16
.
Performance Comparison Case 2, mixed numerology DL, victim 15 kHz SCS, aggressor 30 kHz SCS GB = 30 kHz 10 0
BLER
BLER
10 0
10 -1
10 -2 10
10 -1
CP-OFDM reference FC-F-OFDM, 2 bin TBW, As=10 dB
CP-OFDM reference FCFB, 2 bin TBW, As=10 dB
CP-UF-OFDM, NFIR =73
CP-UF-OFDM, NFIR =37
f-OFDM, TO=0 WOLA, Nws=72
f-OFDM, TO=0 WOLA, Nws=72
CP-OFDM without interference 15
20
25
10 -2 30
35
40
10
CP-OFDM without interference 15
20
25
SNR [dB]
TDL-C 300 ns, 256-QAM, R = 3/4
35
40
TDL-C 1000 ns, 64-QAM, R = 3/4 .
J. Yli-Kaakinen, T. Levanen, M. Renfors, and M. Valkama
30
SNR [dB]
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
Optimized Fast Convolution Based Filtered-OFDM Processing for 5G
.
.
.
.
.
.
.
.
.
17
.
Performance Comparison Case 3, asynchronous UL 10 0
BLER
BLER
10 0
10 -1
10 -2 10
10 -1
CP-OFDM reference FC-F-OFDM, 2 bin TBW, As =10 dB
CP-OFDM reference FC-F-OFDM, 2 bin TBW, As =10 dB
CP-UF-OFDM, Nf =73
CP-UF-OFDM, NFIR=37
f-OFDM, TO=0 WOLA, Nws =72
f-OFDM, TO=0 WOLA, Nws =72
CP-OFDM without interference CP-OFDM synchronous UL reference, GB = 45 kHz 15
20
CP-OFDM without interference CP-OFDM synchronous UL reference, GB = 15 kHz
10 -2 25
30
35
40
5
10
15
SNR [dB]
TDL-C 300 ns, 64-QAM, R = 3/4, GB = 45 kHz
25
30
TDL-C 1000 ns, 64-QAM, R = 1/2, GB = 15 kHz .
J. Yli-Kaakinen, T. Levanen, M. Renfors, and M. Valkama
20
SNR [dB]
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
Optimized Fast Convolution Based Filtered-OFDM Processing for 5G
.
.
.
.
.
.
.
.
.
18
.
Performance Comparison Case 4, mixed numerology UL, victim 15 kHz SCS, aggressor 30 kHz SCS 10 0
BLER
BLER
10 0
10 -1
10 -2 10
10 -1
CP-OFDM reference FC-F-OFDM, 2 bin TBW, As =10 dB
CP-OFDM reference FC-F-OFDM, 2 bin TBW, As =10 dB
CP-UF-OFDM, N FIR=73
CP-UF-OFDM, N FIR=37
f-OFDM, TO=0 WOLA, N ws =72
f-OFDM, TO=0 WOLA, N ws =72 10 -2
CP-OFDM without interference 15
20
25
30
35
40
CP-OFDM without interference 5
10
15
SNR [dB]
TDL-C 300 ns, 64-QAM, R = 3/4, GB = 45 kHz
25
30
TDL-C 1000 ns, 64-QAM, R = 1/2, GB = 15 kHz .
J. Yli-Kaakinen, T. Levanen, M. Renfors, and M. Valkama
20
SNR [dB]
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
Optimized Fast Convolution Based Filtered-OFDM Processing for 5G
.
.
.
.
.
.
.
.
.
19
.
Conclusions ▶
▶
▶
▶
FC processing provides a computationally efficient, flexible, and highly selective subband filtering engine Can be used with CP-OFDM, DFTs-OFDM, ZT-DFTs-OFDM, and single carrier waveforms Given the number of transition-band bins, the performance can be optimized for adjusting the trade-off between the in-band MSE and the spectral containment For more complete description and performance analysis, see J. Yli-Kaakinen et al. “Efficient fast-convolution based waveform processing for 5G physical layer,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 6, pp. 1309–1326, 2017. .
J. Yli-Kaakinen, T. Levanen, M. Renfors, and M. Valkama
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
Optimized Fast Convolution Based Filtered-OFDM Processing for 5G
.
.
.
.
.
.
.
.
.
20
.
References 1
J. Yli-Kaakinen, T. Levanen, S.Valkonen, M. Renfors, and M. Valkama, “Efficient fast-convolution based waveform processing for 5G physical layer,” IEEE Journal on Selected Areas in Communications (Special Issue on Deployment Issues and Performance Challenges for 5G), vol. 35, no. 6, pp. 1309–1326, 2017.
2
M. Renfors, J. Yli-Kaakinen, T. Levanen, M. Valkama, T. Ihalainen, and J. Vihriälä, “Efficient fast-convolution implementation of filtered CP-OFDM waveform processing for 5G,” in Proc. IEEE Globecom Workshops, San Diego,CA, USA, Dec. 2015.
3
M. Renfors, J. Yli-Kaakinen, T. Levanen, and M. Valkama, “Fast-convolution filtered OFDM waveforms with adjustable CP length,” in Proc. Global Conference on Signal and Information Processing (GlobalSIP), Greater Washington, D.C., USA, pp. 635–639.
4
J. Yli-Kaakinen and M. Renfors, “Optimized reconfigurable fast convolution based transmultiplexers for flexible radio access,” IEEE Trans. Circuits Syst II, 2017, to be published.
5
M. Renfors, J. Yli-Kaakinen, and F. Harris, “Analysis and design of efficient and flexible fast-convolution based multirate filter banks,” IEEE Trans. Signal Processing, vol. 62, no. 15, pp. 3768–3783, Aug. 2014.
6
K. Shao, J. Alhava, J. Yli-Kaakinen, and M. Renfors, “Fast-convolution implementation of filter bank multicarrier waveform processing,” in IEEE Int. Symp. on Circuits and Systems (ISCAS), Lisbon, Portugal, May 24–27 2015, pp. 978–981.
7
M. Renfors and J. Yli-Kaakinen, “Flexible fast-convolution implementation of single-carrier waveform processing,” in IEEE Int. Conf on Communications Workshops (ICCW), London, UK, Jun. 8–12 2015, pp. 1243–1248.
8
J. Yli-Kaakinen and M. Renfors, “Optimization of flexible filter banks based on fast convolution,” Journal of Signal Processing Systems, vol. 85, no. 1, pp. 101–111, Aug. 2016. .
J. Yli-Kaakinen, T. Levanen, M. Renfors, and M. Valkama
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
Optimized Fast Convolution Based Filtered-OFDM Processing for 5G
.
.
.
.
.
.
.
.
.
21
.