Spatial and temporal development of siliceous basin ... - Springer Link

2 downloads 0 Views 4MB Size Report
Aug 12, 2008 - Matthias Auer · Hans-Jürgen Gawlick ·. Hisashi Suzuki · Felix Schlagintweit. Received: 6 November 2007 / Accepted: 23 June 2008 / Published ...
Facies (2009) 55:63–87 DOI 10.1007/s10347-008-0155-3

O R I G I N A L A R T I CL E

Spatial and temporal development of siliceous basin and shallow-water carbonate sedimentation in Oxfordian Northern Calcareous Alps Matthias Auer · Hans-Jürgen Gawlick · Hisashi Suzuki · Felix Schlagintweit

Received: 6 November 2007 / Accepted: 23 June 2008 / Published online: 12 August 2008 © Springer-Verlag 2008

Abstract The Late Jurassic succession of Mount Rettenstein (central Northern Calcareous Alps, Austria) is unique in comparison to all other sections known in the Northern Calcareous Alps because it provides the oldest coexistence of radiolarite basin sedimentation with contemporaneous shallow-water carbonate intercalations. An up to 3.5-mthick debris Xow made up of shallow-water carbonate detritus with a radiolaritic matrix is overlain by thin (calcareous) radiolarite, followed by several hundreds of meters of shallow-water carbonates of the Plassen Formation. Benthic foraminifers (Labyrinthia mirabilis Weynschenk and Alveosepta aV. jaccardi) and the radiolarian associations indicate a depositional age of both the debris Xow and the basal Plassen Formation around the boundary of Middle/Late Oxfordian resp. in the Late Oxfordian. This is as yet the Wrst unambiguous evidence of Oxfordian shallow-water sedimentation in the Northern Calcareous Alps. This early neritic stage with the settlement of ooid bars and coralstromatoporoid-reefs, evidenced by the debris Xow resediments in siliceous basin sedimentation, is followed by the deWnite, rapid progradation of the actual Late Oxfordian/ Kimmeridgian–Berriasian Plassen Carbonate Platform with

M. Auer · H.-J. Gawlick (&) · H. Suzuki · F. Schlagintweit Department of Applied Geosciences and Geophysics: Chair of Prospection and Applied Sedimentology, University of Leoben, Peter-Tunner-Str. 5, 8700 Leoben, Austria e-mail: [email protected] M. Auer e-mail: [email protected] H. Suzuki e-mail: [email protected] F. Schlagintweit e-mail: [email protected]

its steep slope conWguration. Assumably, this evolution was steered by a mixture of both global environmental and regional tectonic constraints. Keywords Eastern Alps · Oxfordian · Plassen Carbonate Platform · Debris Xow · Biostratigraphy · Radiolarians · Foraminifera · Tethys

Introduction Knowledge about the Late Middle to Late Jurassic radiolarites of the western Neotethys and Penninic-Piedmont realms has largely increased since the 1980s. The advancement of radiolarian biostratigraphy originally implemented by P. O. Baumgartner and his InterRad Jurassic-Cretaceous working group (Baumgartner 1984; Baumgartner et al. 1995a: Unitary Association Zonation for radiolarians of the Tethyan realm) improved the understanding of these regionally distributed siliceous deep-water series lacking of any index macrofossils. Together with breccia analysis, the application of radiolarian biostratigraphy had also a great impact on the understanding of the tectono-stratigraphic evolution of the Northern Calcareous Alps as it enabled to prove the heterochroneity of diVerent partial basins (e.g., Gawlick et al. 1999a, 2007a; Gawlick and Suzuki 1999; Missoni et al. 2001; Missoni 2003; Gawlick and Frisch 2003; Suzuki and Gawlick 2003a, b; Auer et al. 2006a for comparison: Diersche 1980). Nevertheless, despite the large progress the resolution of radiolarian biostratigraphy is still far from satisfactory particularly for the Oxfordian to Early Kimmeridgian period and thus for the time, when the siliceous basin sedimentation of the Northern Calcareous Alps was gradually replaced by hemipelagic and/or shallow-water carbonate sedimentation.

123

64

Facies (2009) 55:63–87

Fig. 1 a Tectonic map showing the regional situation of the Eastern Alps (after Frisch and Gawlick 2003). b Tectonic map of the central Northern Calcareous Alps according to Frisch and Gawlick (2003) with the location of Mount Rettenstein (R) at the southern rim of the central Northern Calcareous Alps southwest of the Dachstein Massif. Other localities mentioned in the text are indicated as follows: B Bürgl, DB Drei Brüder, F Fludergraben, K Krahstein, KN Knallalm-Neualm area, KT Katrin, PL Plassen, TB Tauglboden

The indicators concerning the beginning of Late Jurassic carbonate platform sedimentation in the Northern Calcareous Alps are ambiguous. On one hand, in most places a shallowing-upward sequence exists which transmits from deep-water to shallow-water conditions—this sequence has been assigned an Early Kimmeridgian age (e.g., Schlagintweit et al. 2003; 2005: Mount Plassen; Gawlick et al. 2004: Mount Krahstein; Gawlick et al. 2007b: Drei Brüder; see Fig. 1 for locations). On other hand, shallow-water detritus supposedly originating from an initial/precursor Late Jurassic platform stadium has been recognized at various locations (e.g., Mount Katrin: Auer et al. 2006a; KnallalmNeualm region: Auer et al. 2007; Tauglboden valley: Gawlick et al. 1999b; Gawlick 2000; Fludergraben-Knerzenalm area: Gawlick et al. 2007a; Fig. 1). The minimum age of these resediments, on the basis of radiolarian biostratigraphy applied on the siliceous background sediments (Suzuki and Gawlick 2003a; Beccaro 2004, 2006; Suzuki et al. 2004), is Early to Middle Oxfordian. This circumstance clearly suggests the existence of places with embryonic shallow-water carbonate sedimentation, none of which, however, has been preserved in situ. At Mount Rettenstein, the depositional situation is diVerent from all as yet described locations: again, the early plat-

123

form stage is evidenced only by redeposited shallow-water carbonate material. However, here a debris Xow (in the following called Rettenstein Debris Flow) made up almost exclusively of Late Jurassic shallow-water carbonate clasts occurs, which underlies the radiolarite of the Ruhpolding Radiolarite Group. Thus the Rettenstein Debris Flow proves not only the settling of shallow-water conditions in the Northern Calcareous Alps at a very early stage, but also a considerable time of radiolaritic basin sedimentation concomitant with this initial carbonate platform phase. In addition to its important implications on the models concerning the depositional evolution of the Northern Calcareous Alps, the Late Jurassic Mount Rettenstein succession has also an impact on existing biostratigraphic charts: the age data gathered from both deep-water and shallow-water organisms are not completely coincident. For that reason the two methods have to be slightly adapted to each other.

Geological situation of Mount Rettenstein and the Weitenhausgraben section Mount Rettenstein (also called Rötelstein) is a conspicuous, 2,246 m high mountain southwest of the Dachstein massif

Facies (2009) 55:63–87

65

Fig. 2 Stratigraphic table of the Jurassic of the Northern Calcareous Alps with its lateral variations depending on the palaeogeographic position (after Gawlick et al. 2007a)

nearby the small town Filzmoos (Fig. 1), rising steeply from the rather smooth “Werfener Schuppenzone” landscape. It is the southernmost major incidence of the Late Jurassic Plassen Carbonate Platform rocks in quite a distance to all the other prominent Plassen Formation occurrences, the closest of which is the type-locality Mount Plassen approx. 12 km to the north–northeast (Fig. 1). Structurally, Mount Rettenstein is accounted to the Upper Tirolic unit in the sense of Frisch and Gawlick (2003). The geological situation of Mount Rettenstein is complex and as yet not understood in detail (Auer et al. 2006b, 2007): the some hundreds of meters thick, mainly Kimmeridgian Plassen Formation occupies upper part of an Early to Late Jurassic succession (Fig. 2) that lacks its primary Triassic substratum—in the following this speciWc Jurassic sequence will be referred to as the “Rettenstein succession sensu stricto”. This Rettenstein succession s. str. is surrounded/underlain by Scythian-Anisian rocks of the “Werfener Schuppenzone” particularly made up by the Werfen and Reichenhall Formations. In between, there is a some tens to far more than hundred meters thick chaotic zone made up of various stratigraphic units of diVerent age, origin and facies. Due to its internal construction and the occurrence of Triassic Hallstatt facies rocks (Lein 1976), this unit is accounted to the Hallstatt Mélange (in the sense of Gawlick and Frisch (2003): Middle Jurassic slide masses

originating from the Late Triassic reef, Zlambach and Hallstatt facies zones; see Fig. 2). Scarce occurrences of radiolarite within this unit yield a Bajocian to Bathonian/?Early Callovian and thus signiWcantly older age (unpublished data) than the radiolarites of the Rettenstein succession s. str., supporting the Hallstatt Mélange interpretation. The most complete section of the succession underneath the Plassen Formation is found in the Weitenhausgraben cirque on the southern side of the Rettenstein massif between 1,650 and 1,820 m.a.s.l (Fig. 3). Siliciclastic rocks of the topmost Scythian Werfen Formation are stratigraphically overlain by rauhwacke of the Reichenhall Formation and dark crinoid-rich dolomitic limestone of the Gutenstein Formation, all of which making up the upper part of the “Werfener Schuppenzone”. The overlying, in this area at least 50-m-thick Hallstatt Mélange is bordered at its basis and its top by prominent subhorizontal faults (see Auer et al. 2007 for a discussion of their genesis). In the Weitenhausgraben section the Hallstatt Mélange consists mainly of stratiWed gypsum-bearing Haselgebirge claystones and smaller amounts of red to ochre colored Hallstatt Limestone of Alaunian age with Norigondolella steinbergensis (Mosher) and Epigondolella cf. postera Kozur and Mostler, and Rhaetian bioturbated Zlambach Marls with Oncodella paucidentata (Mostler) and Norigondolella steinbergensis (Mosher). The superimposing Rettenstein succession s. str.

123

66 Fig. 3 a Southern Xank of Mount Rettenstein showing the situation of the Weitenhausgraben cirque at the base of the Plassen Formation massif. b Closer northward look on the Weitenhausgraben cirque between about 1,600 and 1,900 m.a.s.l. with indication of the main stratigraphic units of the section. From basis to top: Clastic rocks of the Werfen Formation (Wc), rauhwacke (Rw) of the Reichenhall Formation and crinoid limestone (Cl) of the Gutenstein Formation, all together constituting the topmost “Werfener Schuppenzone”; Haselgebirge (HG), Norian Hallstatt Limestone (HL) and Zlambach Formation (Zl) of the Hallstatt Mélange; above the Rettenstein succession senso stricto with Liassic grey marly limestones (LiB, basin position), Liassic red limestones (LiR, rise position), the Rettenstein Debris Flow (DF), Ruhpolding Radiolarite Group (RR) and Plassen Formation (Pl). PlQ = Plassen Formation slide blocks (Quaternary)

Fig. 4 Facies reconstruction of the Kimmeridgian Mount Rettenstein Plassen Carbonate Platform succession and the occurrences of some selected microfossils (1-3 benthic foraminifera, 4-6 dasycladalean algae). 1 Reophax? rhaxelloides Schlagintweit et al. (2007); 2 Labyrinthina mirabilis Weynschenk (1951); 3 “Kilianina” rahonensis Foury and Vincent (1967); 4 Petrascula bursiformis (Ettalon 1858); 5 Clypeina sulcata (Alth 1882); 6 Campbelliella striata (Carozzi 1954). Slightly modiWed from Schlagintweit et al. (2007). The occurrence of basal resediments (BR) in the Plassen Formation in the Weitenhausgraben and at the northwestern basis of the massif is indicated

123

Facies (2009) 55:63–87

Facies (2009) 55:63–87

starts with at maximum 60-m-thick Early Jurassic bioturbated marly limestones of the Allgäu Formation of Hettangian to Pliensbachian age (Tollmann 1960). The wellbedded succession is characterized by greenish beige colors and scarce red limestone intercalations. The up to 8-m-thick nodular marly Adnet Formation follows above. These red limestones yielded a rich ammonite fauna that constrains a Pliensbachian to Early Toarcian stratigraphic age (see Meister and Böhm 1993 for details). Above a hiatus the Middle Jurassic is represented by at maximum 2-m-thick marls of the Klaus Formation with Bositra and protoglobigerines. These red marls are erosionally truncated at various levels by the laterally persistent and up to 3.5-m-thick Rettenstein Debris Flow. Above a variously colored 1- to 1.5-m-thick sequence of pure radiolarites of the Ruhpolding Radiolarite Group, several hundreds of meters of Plassen Formation follow, starting with a thin sequence of slope facies breccias. The main body is made up of poorly bedded to massive platform margin carbonates of Kimmeridgian age. Late Kimmeridgian to Early Tithonian? backreef and lagoon sediments form the upper part of the Plassen Formation sequence and are found particularly on the northern and northeastern Xanks of the massif (Fig. 4). Whereas the Early to Middle Jurassic basinal sediments of the Rettenstein succession s. str. have been studied more recently especially on their ammonite fauna (Tollmann 1960; Hirschberg and Jacobshagen 1965; Meister and Böhm 1993), no modern investigations of the overlying strata have taken place following the rather descriptive treatises of Spengler (1943) and Ganss et al. (1954). The extremely momentous shallow-water debris Xow below the radiolarite was only mentioned by Meister and Böhm (1993). They, however, did not deal with the succession above the red basin limestones in detail but only brieXy suggested a tectonic origin for the radiolarite, locally developed as a breccia with metre-sized blocks of grey shallowwater limestone. A more extensive investigation of this very special sequence had not been carried out until very recent times (Auer et al. 2006b; Schlagintweit et al. 2006, 2007).

Oxfordian transitional sequence Mount Rettenstein is not the only location proving the onset of shallow-water carbonate sedimentation during deposition of the Ruhpolding Radiolarite Group. However, in contrast to the only small and scarce Plassen Formation clasts within thin breccia horizons and allodapic limestone intercalations particularly in the basal part of the Tauglboden Formation, the Rettenstein Debris Flow is unique: Firstly, it occurs below the complete radiolarite succession. Secondly, it forms a massive body made up almost com-

67

pletely of Late Jurassic shallow-water material (Fig. 5). Compared to the situation at other locations some questions arise: was the beginning of platform sedimentation in the supply area of the Rettenstein Debris Flow extraordinary early, was the start and period of radiolarite deposition extraordinary late, or is the situation met a mixture of both? Fossils with partly well constrained biostratigraphic ages of both environments, shallow water (foraminifers, algae and others) and deep water (radiolarians), help answering this question and yield a time-frame for speculations about the sedimentary situation from the Late Middle Oxfordian to the Oxfordian-Kimmeridgian boundary.

The Rettenstein Debris Flow The Rettenstein Debris Flow is almost exclusively made up of Late Jurassic shallow-water detritus from the initial Plassen Carbonate Platform, has locally a radiolaritic matrix and is overlain by a thin radiolarite sequence. This situation is only found in the area of the Weitenhausgraben cirque, where the debris Xow is proved fragmentarily across the complete, approximately 250 m wide outcrop area with a thickness between 1.5 and 3.5 m (Figs. 3, 5). Abundant high-angle faults of various orientation, large Recent Plassen Formation block slides and a thick cover of debris from the Rettenstein massif hamper a more continuous observation. Nevertheless, there are plenty of small outcrops revealing partial proWles across the Rettenstein Debris Flow and its underlying and overlying strata, respectively (Fig. 5). The basis of the Rettenstein Debris Flow is clearly erosive (Fig. 6a). Mostly the basal surface cuts down into the ?Middle Jurassic marls of the Klaus Formation. However, in places it eroded down more deeply, even reaching the nodular limestone of the Adnet Formation. Often this basal contact between the massive rocks of the debris Xow and the underlying well-bedded marly limestones is slightly sheared due to the considerably diVerent rheology. The basal portion of the debris Xow does not give any hints on an incorporation of material from the substratum. The maximum grain size is about 1 cm with the largest components commonly in the lower part of the debris Xow and the generally coarsest breccias in the easternmost outcrop area. In comparison to the mainly component-supported lower to middle part of the debris Xow, the uppermost part is often matrix-supported. This matrix contains radiolarians or even consists of pure radiolarian wackestones to radiolarites. These do not show any diVerences to the overlying radiolarite succession they grade into (Fig. 6b). The component spectrum shows variations in vertical and in horizontal direction (Fig. 7). For example, in the western Weitenhausgraben cirque the breccia is characterized by a high content of brownish to yellowish ooids, often

123

68

Facies (2009) 55:63–87

Fig. 5 Schematic stratigraphic column of the only several meters thick Weitenhausgraben section between the Adnet Formation and the basal Plassen Formation including a table of the approximate sample positions within the section and relative to each other

Fig. 6 a Photo of the massive Rettenstein Debris Flow (DF), here lying on top of red marly limestone of the Adnet Formation (Ad) with an irregular, slightly sheared contact (dashed line); radiolarite is covered by de-

bris, Plassen Formation (Pl) in the background. b Transition from the massive uppermost debris Xow (DF) with radiolaritic matrix into to the well-bedded basal radiolarites of the Ruhpolding Radiolarite Group (RR)

with borings of cyanophyceans whereas in other places these ooids are rather seldom. Overall, detritus originating from coral-stromatoporoid patch reefs constitutes the main amount of clasts. The component spectrum is rather limited and documents the erosion and mobilization of parts of an initial shallow-water area. This was characterized by the establishment of a neritic rise with the formation of ooid bars and coral-stromatoporid patches. Within the clast spec-

trum there are no hints on the existence and nature of a transitional sequence that must have transmitted from deepwater to shallow-water deposition. Within clasts of the Rettenstein Debris Flow the following species have been recognized (Table 1; see Fig. 8 for visualization). The uppermost debris Xow’s radiolaritic matrix (Fig. 7, samples Rö 46, Rö 262) was dissolved in diluted hydroXou-

123

Facies (2009) 55:63–87

69

Fig. 7 Microfacies of the Rettenstein Debris Flow. Scale bars equal to 2 mm; for sample locations see Fig. 5. a Top of the Rettenstein Debris Flow: amalgamated shallow-water clasts in a radiolarian rich siliceous matrix. Sample Rö 262a. b Detail from a showing the radiolaria-rich matrix. Note test of trochospiral benthic foraminifer on the right. Sample Rö 262a. c Mass-Xow with bimodal grain sorting caused by larger micritized lithoclastic grains and ooids of shallow-water origin. The larger fragments presumably represent metazoan fragments (corals or stromatoporoids) showing siliWcation. Sample Rö 55. d Semi-lithiWed radiolarian wacke-/packstone showing mass-Xow erosional truncation. Sample Rö 46. e Ooid-rich mass-Xow composed of micritized ooids and rounded skeletal fragments exhibiting thick micritic rims. Sample Rö 44b. f Closely packed mass-Xow (packstone-texture) with skeletal fragments, some ooids and Labyrinthina mirabilis Weynschenk, 1951 (LM). Sample Rö 422a. g–h Coarser grained massXow of the eastern Weitenhausgraben cirque with rudstone texture, consisting of debris of corals (with crust of Lithocodium aggregatum Elliott, 1956 in g) and rivulariacean algae. Skeletal components show a rim of Wbrous cement, remaining porespace Wlled with granular blocky calcite and geopetal fabrics (accumulation of Wne-debris between components in g). Samples Rö 421a (g) and Rö 421c (h)

ric acid. The residue delivered a large, excellently preserved radiolarian fauna (Fig. 9, Table 2), including the following important, age-restricting species: the zone fossil Zhamoidellum ovum Dumitrica (Callovian to Early Tithonian, Suzuki and Gawlick 2003a) and, for a more accurate conWnement, Stichomitra annibill Kocher and Williriedellum carpathicum Dumitrica (Wrst appearance of W. carpathicum is laid in the upper part of the Protonuma lanosus subzone, Auer et al. 2007) deWning the maximum age, and Eucyrtidiellum unumaense pustulatum Baumgartner, Eucyrtidiellum unumaense unumaense (Yao) and Williriedellum marcucciae Cortese deWning the minimum age. The latest occurrence of the latter four species was in the Early Oxfordian (Baumgartner et al. 1995a; Suzuki and

Gawlick 2003a), or—corrected after the new Wndings of Beccaro (2004, 2006)—in the Middle Oxfordian (Suzuki et al. 2004). Thus the radiolarian association restricts the possible depositional age to the upper Protonuma lanosus subzone to Williriedellum dierschei subzone of the Zhamoidellum ovum zone corresponding to the Late Callovian to Middle Oxfordian interval.

Radiolarite of the Ruhpolding Radiolarite Group The transition from the Rettenstein Debris Flow into the up to 1.5-m-thick radiolarites to siliceous radiolarian wackestones of the Ruhpolding Radiolarite Group is gradual (see

123

70 Table 1 List of the shallow-water organisms of the Rettenstein Debris Flow Benthic Foraminifera Alveosepta aV. jaccardi (Schrodt)* Labyrinthina mirabilis Weynscheck* Protopeneroplis striata Weynschenk Reophax? rhaxelloides Schlagintweit et al. Troglotella incrustans Wernli and Fookes Calcareous algae Petrascula bursiformis (Ettalon)* Salpingoporella pygmaea (Gümbel) Solenoporaceae Others Carpathocancer triangulatus (Misik et al.) Lithocodium aggregatum Elliott Radiomura cautica Senowbari-Daryan & Schäfer Debris of corals, stromatoporoids

Fig. 6b). Microscopically the well-bedded (calcareous) radiolarite and the underlying matrix radiolarites of the debris Xow look the same (Fig. 10, see Fig. 7.4 for comparison). Within the radiolarite sequence the color varies in both vertical and horizontal direction. Green and red colors characterize the basis and the main part of the sequence whilst bright grey to ochre colors are mostly found at the top. The transition to the overlying Plassen Formation is often abrupt and secondarily sheared, however, without signiWcant relative displacement (see below). Well-preserved radiolarian faunas have been received from across the complete Ruhpolding Radiolarite Group (Fig. 11). The biodiversity, however, is smaller than in the debris Xow⬘s matrix and a general decrease in diVerent species has been recognized from the basis to the top of the radiolarite, too (Table 2). Nevertheless, the age-restricting radiolarians are more or less the same like those of the Rettenstein Debris Flow. These are: Eucyrtidiellum unumaense, Stichomitra annibill Kocher, Williriedellum cf. carpathicum Dumitrica, Williriedellum dierschei Suzuki and Gawlick, Williriedellum marcucciae Cortese, and Zhamoidellum ovum Dumitrica, again, suggesting a Late Callovian to Middle Oxfordian age.

Facies (2009) 55:63–87

have been proved in one place (Sample Rö 49; Figs. 5, 12a, 13). However, in addition to the coarser grained sediments thin layers of pure radiolarite alternating with Wne-grained allodapic limestones are frequently found in the basal, slightly siliceous Plassen Formation (Samples Rö 50, Rö 257; Figs. 5, 12b). Considering these thin pure radiolarite layers already within the Plassen Formation, the seemingly clear borderline between the Ruhpolding Radiolarite Group und the Plassen Formation, drawn on the basis of outcrop observations like the morphological and rheological habits, becomes questionable. In any case, looking at this gradual change from siliceous to calcareous sedimentation there can be no doubt that the tectonic displacement between these stratigraphic units is negligible, contradicting the assumption of a prominent fault at the basis of the Plassen Formation (Meister and Böhm 1993). The succession described is part of the transitional shallowing-upward sequence of the Plassen Carbonate Platform above the Ruhpolding Radiolarite Group and represents slope facies deposits. In contrast to the Rettenstein Debris Flow, which has been observed all exclusively in the Weitenhausgraben cirque and is thus probably rather a twodimensional phenomenon, this kind of coarse-grained basal Plassen Formation is more widespread. For example, nice outcrops have also been found at the bottom of the northwestern Rettenstein massif (Fig. 4), here with a larger thickness of some meters. Similarly, the component spectrum is predominated by ooids, corals, stromatoporoids and foraminifers—radiolarians, however, have not been found at this place. The hydroXuoric acid dilution residue of two samples from the siliceous-calcareous basis of the Plassen Formation (Rö 49 and Rö 257) yielded a smaller and generally poorer preserved fauna than those of the underlying sequences (Fig. 13, Table 2). Most important is Williriedellum carpathicum, together with the zone fossil Zhamoidellum ovum Dumitrica, Eucyrtidiellum unumaense, and Williriedellum cf. dierschei, once again proving a Late Callovian to Middle Oxfordian age. Thus at Mount Rettenstein a start of the Plassen Carbonate Platform sedimentation no later than around the Middle to Late Oxfordian boundary is directly constrained by radiolarian biostratigraphy.

Discussion Basis of the Plassen Formation Similar resediment-breccias like those of the Rettenstein Debris Flow exist at the basis of the Plassen Formation. Texturally and compositionally these rudstones can hardly be distinguished from the Rettenstein Debris Flow. Ooids and stromatoporoid and coral fragments are the main constituents. Radiolarians surrounding the breccia components

123

Ambiguous ages from deep-water and shallow-water guide fossils At Mount Rettenstein the biostratigraphic age of the succession leading over from basin to shallow-water sedimentation is twofold constrained. On one hand, there is the information from shallow-water organisms within redepos-

Facies (2009) 55:63–87

71

Fig. 8 Micropalaeontology of the shallow-water carbonate clasts of the debris Xow; for sample locations see Fig. 5. a Mollusc debris; note two specimens of Labyrinthina mirabilis Weynschenk, 1951 in diVerent sections (LM; see also Fig. 14). Sample Rö 54, scale bar = 2 mm. b Larger bioclasts of metazoans and oblique section of dasycladale Petrascula bursiformis (Ettalon, 1858) (lower right). Sample Rö 262a, scale bar = 2 mm. c Radiolaria-rich matrix containing the test of Protopeneroplis striata Weynschenk, 1950 (centre). Sample Rö 46, scale bar = 2 mm. d Rudstone with debris of corals, stromatoporoids and a pelecypod shell encrusted by Lithocodium aggregatum Elliott, 1956. Sample Rö 421c, scale bar = 2 mm. e Radiolarite in contact with a

packstone with a nice section of a large stromatoporoid skeleton (right). Sample Rö 56a, scale bar = 2 mm. f Two joint articles of Carpathocancer triangulatus (Misik et al., 1999), interpreted as decapod remains. Sample Rö 423a, scale bar = 1 mm. g Oblique longitudinal section of benthic foraminifer Reophax? rhaxelloides (Schlagintweit et al., 2007). Sample Rö 421a, scale bar = 1 mm. h Fragment of Labyrinthina mirabilis Weynschenk, 1951. Sample Rö 422a, scale bar = 0.25 mm. I Benthic foraminifer Alveosepta aV. jaccardi (Schrodt, 1894) (right) and fragment of Carpathocancer triangulatus (Misik et al., 1999) (left). Sample Rö 56a, scale bar = 0.25 mm

ited clasts of the debris Xow and the basal Plassen Formation. On other hand, there is the biochronological information from the radiolarians of the debris Xow, the

radiolarites and the siliceous basis of the Plassen Formation. In opposition to normal depositional rules, the biostratigraphic age received by means of fossils of the

123

72

123

Facies (2009) 55:63–87

Facies (2009) 55:63–87

73

䉳 Fig. 9 Radiolarian fauna of the uppermost debris Xow⬘s radiolaritic matrix (samples Rö 46 and Rö 262, for location see Fig. 5; scale bars equal to 30 m). 1 Acanthocircus cf. suboblongus minor Baumgartner et al. 1995a, 1995b in Baumgartner et al. 1995b; Rö 46; 2 Acanthocircus cf. suboblongus (Yao, 1972); Rö 46; 3 Archaeodictyomitra amabilis Aita, 1987; Rö 262; 4 Archaeodictyomitra minoensis (Mizutani, 1981); Rö 46; 5 Archaeodictyomitra mitra Dumitrica et al. 1997; Rö 262; 6 Archaeodictyomitra primigena Pessagno and Whalen, 1982; Rö 262; 7 Archaeodictyomitra rigida Pessagno, 1977; Rö 46; 8 Archaeodictyomitra sixi Yang, 1993; Rö 46; 9 Archaeodictyomitra sp. B sensu Wegerer et al., 2001; Rö 46; 10 Archaeospongoprunum cf. elegans Wu, 1993; Rö 262; 11 Archaeospongoprunum imlayi Pessagno, 1977; Rö 46; 12 Bernoullius dicera (Baumgartner, 1980); Rö 46; 13 Cinguloturris carpatica Dumitrica and Mello 1982in Dumitrica and Mello 1982; Rö 46; 14 Cinguloturris primorika Kemkin and Taketani, 2004; Rö 46; 15 Crucella sp.; Rö 46; 16 Fultacapsa sp.; Rö 46; 17 Dibolachras cf. chandrika Kocher, 1981; Rö 46; 18 Dictyomitrella kamoensis Mizutani and Kido, 1983; Rö 262; 19 Droltus aV. hecatensis Pessagno and Whalen, 1982; Rö 46; 20 Emiluvia premyogii Baumgartner, 1984; Rö 46; 21 Eucyrtidiellum circumperforatum Chiari et al. 2002; Rö 262; 22 Eucyrtidiellum nodosum Wakita, 1988; Rö 46; 23 Eucyrtidiellum ptyctum (Riedel and SanWlippo, 1974); Rö 46; 24 Eucyrtidiellum semifactum Nagai and Mizutani 1990; Rö 46; 25 Eucyrtidiellum unumaense pustulatum Baumgartner 1984; Rö 46; 26 Eucyrtidiellum unumaense (Yao 1979); Rö 262; 27 Eucyrtidiellum unumaense unumaense (Yao 1979); Rö 46; 28 Fultacapsa sp.; Rö 46; 29 Gongylothorax favosus Dumitrica, 1970; Rö 46; 30 Gongylothorax aV. favosus Dumitrica, 1970; Rö 46; 31 Gongylothorax sp. C sensu Suzuki and Gawlick 2003a, b; Rö 262; 32 Gorgansium xigazeense Wu, 1993; Rö 46; 33 Hemicryptocapsa sp.; Rö 46; 34 Hiscocapsa cf. acuta Hull, 1997; Rö 46; 35 Hiscocapsa cf. hexagona (Hori, 1999); Rö 46; 36 Homoeoparonaella elegans (Pessagno, 1977); Rö 46; 37 Hsuum brevicostatum (Ozvoldova, 1975); Rö 46; 38 Hsuum maxwelli Pessagno, 1977; Rö 46; 39 Lithocampium matsuokai (Hull, 1997); Rö 262; 40 Lithocampium sp. D; Rö 262; 41 Loopus doliolum Dumitrica et al. 1997 in Dumitrica et al. 1997; Rö 46; 42 Neorelumbra skenderbegi Chiari et al. 2002; Rö 46; 43 Parahsuum levicostatum Takemura,

1986; Rö 46; 44 Parahsuum sp. S sensu Matsuoka, 1986; Rö 46; 45 Paronaella sp.; Rö 262; 46 Parvicingula cappa Cortese, 1993; Rö 262; 47 Parvicingula spinata (Vinassa de Regny 1899); Rö 262; 48 Parvifavus wallacheri (Grill and Kozur, 1986); Rö 46; 49 Parvifavus sp. B; Rö 46; 50 Podobursa sp.; Rö 46; 51 Praewilliriedellum spinosum Kozur, 1984; Rö 262; 52 Praezhamoidellum buekkense Kozur, 1984; Rö 46; 53 Protunuma multicostatus (Heitzer, 1930); Rö 46; 54 Protunuma ochiensis Matsuoka, 1983; Rö 46; 55 Pseudodictyomitra sp. D sensu Matsuoka and Yao, 1985; Rö 46; 56 Pseudodictyomitrella spinosa Grill and Kozur 1986; Rö 262; 57 Quarticella ovalis Takemura, 1986; Rö 262; 58 Saitoum levium De Wever, 1981; Rö 46; 59 Sethocapsa sp. A; Rö 46; 60 Sphaerostylus lanceola (Parona, 1890); Rö 46; 61 Sphaerostylus cf. squinaboli (Tan, 1927); Rö 262; 62 Stichocapsa convexa Yao, 1979; Rö 46; 63 Stichocapsa naradaniensis Matsuoka, 1984; Rö 46; 64 Stichocapsa robusta Matsuoka, 1984; Rö 46; 65 Stichocapsa trachyostraca (Foreman, 1973); Rö 262; 66 Stichomitra annibill Kocher, 1981; Rö 46; 67 Stichomitra sp. D sensu Kiessling, 1999; Rö 46; 68 Stylocapsa oblongula Kocher, 1981; Rö 262; 69 Syringocapsa sp.; Rö 262; 70 Tetracapsa sp. A sensu Suzuki and Gawlick 2003a, b; Rö 46; 71 Tetracapsa sp. B; Rö 46; 72 Theocapsomma cordis Kocher, 1981; Rö 262; 73 Triactoma sp.; Rö 262; 74 Tricolocampe sp.; Rö 46; 75 Tricolocapsa conexa Matsuoka, 1983; Rö 262; 76 Tricolocapsa leiostraca (Foreman, 1973); Rö 46; 77 Tricolocapsa riri (O’Dogherty et al., 2005); Rö 262; 78 Tricolocapsa undulata (Heitzer, 1930); Rö 46; 79 Tricolocapsa sp. S sensu Baumgartner et al., 1995b; Rö 46; 80 Tricolocapsium sp. A; Rö 46; 81 Tritrabs sp.; Rö 46; 82 Triversus hexagonatus (Heitzer, 1930); Rö 46; 83 Triversus hungaricus (Kozur, 1985); Rö 46; 84 Unuma gorda Hull, 1997; Rö 262; 85 Williriedellum carpathicum Dumitrica, 1970; Rö 46; 86 Williriedellum cf. crystallinum Dumitrica, 1970; Rö 262; 87 Williriedellum dierschei Suzuki et al. 2004in Gawlick et al., 2004; Rö 46; 88 Williriedellum marcucciae Cortese, 1993; Rö 46; 89 Williriedellum sujkowskii Widz and De Wever, 1993; Rö 46; 90 Wrangellium sp.; Rö 262; 91 Zhamoidellum exquisitum Hull, 1997; Rö 46; 92 Zhamoidellum kozuri (Hull, 1997); Rö 46; 93 Zhamoidellum ovum Dumitrica, 1970; Rö 46; 94 Zhamoidellum ventricosum Dumitrica, 1970; Rö 46; 95 Hsuum baloghi Grill and Kozur 1986; Rö 262

resedimented clasts appears younger than the age inferred from the background sediments! As the joint occurrence of these critical shallow- and deep-water species is absolutely undoubted—they were proved directly next to each other in the same samples (Rö 46, Rö 49, Rö 262)—it must be concluded, that either the common biostratigraphic chart for foraminifera or the one for radiolarians is not exact for this time interval and one of the diVerent biostratigraphic approaches or both have to be adapted to the other. The shallow-water organisms within the debris Xow are almost exclusively long-ranging species with only limited signiWcance for biostratigraphic needs. However, there are two important exceptions: Labyrinthia mirabilis Weynschenk, very common in the debris Xow (Figs. 7.1, 7.8, 14), and Alveosepta aV. jaccardi (Schrodt) (Fig. 7.9). There is a lot of literature of selected case studies or overviews on the biostratigraphy of Jurassic larger benthic foraminifera. In the following we exclusively refer to the treatises of Pélissié et al. (1984) and Bassoullet (1997). The former paper contains—to our knowledge—the oldest report of Labyrinthina mirabilis in the literature. Pélissié et al. (1984)

(Fig. 1) present a range chart that, cross-checked by ammonites in irregular distances, includes data from the Late Oxfordian. The paper of Bassoullet (1997) represents a revision about the biostratigraphic distribution of Jurassic larger benthic foraminifera, a topic the author was dealing for nearly 20 years (Bassoullet and Fourcade 1979). Interesting for our purposes are the Wrst appearance data (FAD) of both, Labyrinthina mirabilis and Alveosepta jaccardi. According to Pélissié et al. (1984), Labyrinthina mirabilis occurred directly at the end of the transversarium zone (Middle/Late Oxfordian boundary after the re-deWnition of the former assigned boundaries of biostratigraphic units—e.g., Ogg (2004) after Groupe Francais d⬘Etude du Jurassique (1997); Late Middle Oxfordian in former times—e.g., Gradstein et al. (1995) with references, Baumgartner et al. (1995b) for radiolarian biochronology with ammonite zones after Poitiers proceedings (1991). Bassoullet (1997), however, indicates the FAD of L. mirabilis to be within the planula-zone (latest Late Oxfordian– Ogg (2004) with references; upper part of the Late Oxfordian– Gradstein et al. (1995) with references). For Alveosepta

123

74

Fig. 9 continued

123

Facies (2009) 55:63–87

Facies (2009) 55:63–87

75

Fig. 9 continued Table 2 Occurrence table of the radiolarian assemblages yielded per sample (compare Fig. 5) Sample

Rö 46

Lithology species

Debris Xow matrix Fig. 9

Acanthocircus suboblongus (Yao, 1972)

cf.

Acanthocircus suboblongus minor Baumgartner, 1995 in Baumgartner et al. 1995b

cf.

Archaeodictyomitra amabilis Aita, 1987 Archaeodictyomitra minoensis (Mizutani, 1981)

Rö 262

Rö 268

Rö 269

Radiolarite Fig. 11

Rö 49

Rö 257

Basal slope breccia Fig. 13

£ £

Archaeodictyomitra mitra Dumitrica 1997 in Dumitrica et al. 1997

£

Archaeodictyomitra primigena Pessagno & Whalen, 1982

£

Archaeodictyomitra rigida Pessagno, 1977

£

£

Archaeodictyomitra sixi Yang, 1993

£

£

Archaeodictyomitra sp. B sensu Wegerer et al., 2001

£

Archaeospongoprunum elegans Wu, 1993

£ £ £

£

cf. £

Bernoullius dicera (Baumgartner, 1980) Cinguloturris carpatica Dumitrica 1982 in Dumitrica and Mello 1980

Rö 244

£ £

Archaeodictyomitra mirabilis Aita, 1987

Archaeospongoprunum imlayi Pessagno, 1977

Rö 47

£ £

Cinguloturris primorika Kemkin & Taketani, 2004

£

Dibolachras chandrika Kocher, 1981

cf.

£

cf.

cf.

123

76

Facies (2009) 55:63–87

Table 2 continued Sample

Rö 46

Lithology species

Debris Xow matrix Fig. 9

Dictyomitrella kamoensis Mizutani & Kido, 1983

Rö 262

Rö 47

Rö 244

£

Emiluvia premyogii Baumgartner, 1984

£

Eucyrtidiellum circumperforatum Chiari, Marcucci & Prela, 2002

Rö 49

cf. £

£

Eucyrtidiellum nodosum Wakita, 1988

£

£

£

cf.

£

cf.

Eucyrtidiellum ptyctum (Riedel & SanWlippo, 1974)

£

£

£

£

£

£

Eucyrtidiellum semifactum Nagai & Mizutani, 1990

£ £

£

Eucyrtidiellum takemurai Hull, 1997

£

Eucyrtidiellum unumaense pustulatum Baumgartner, 1984

£

£

Eucyrtidiellum unumaense unumaense (Yao, 1979)

£

£

Eucyrtidiellum unumaense (Yao, 1979)

£

£

Gongylothorax sp. C sensu Suzuki & Gawlick, 2003

£

£

£

£

Gongylothorax aV. favosus Dumitrica, 1970

£

£

£

£

Gongylothorax favosus Dumitrica, 1970

£

£

£

£

Gorgansium xigazeense Wu, 1993

£

Hiscocapsa acuta Hull, 1997

cf.

Hiscocapsa hexagona (Hori, 1999)

cf.

Homoeoparonaella elegans (Pessagno, 1977)

£

Hsuum baloghi Grill & Kozur, 1986 £

Hsuum maxwelli Pessagno, 1977

£

Lithocampium sp. D

£

£

cf.

£

£

£

£

£ £

Neorelumbra skenderbegi Chiari, Marcucci & Prela, 2002 £

Parahsuum sp. S sensu Matsuoka, 1986

£ £

Parvicingula spinata (Vinassa de Regny 1899)

£

Parvifavus sp. B

£

Parvifavus wallacheri (Grill & Kozur, 1986)

£

Podobursa sp. A

£ £

£

Praewilliriedellum spinosum Kozur, 1984

£

£

£ aV.

£

Praezhamoidellum parvipora (Tan, 1927)

cf.

Praewilliriedellum sp. B

£

Praezhamoidellum yaoi Kozur, 1984

£

Protunuma multicostatus (Heitzer, 1930)

£

Protunuma ochiensis Matsuoka, 1983

£

£

£

£

cf.

Pseudodictyomitrella spinosa Grill & Kozur, 1986

£

Quarticella ovalis Takemura, 1986

123

cf.

£

Pseudodictyomitra primitiva Matsuoka & Yao, 1985

Saitoum levium De Wever, 1981

£

£

Parvicingula cappa Cortese, 1993

Pseudodictyomitra sp. D sensu Matsuoka & Yao, 1985

£

£

Parahsuum levicostatum Takemura, 1986

Praezhamoidellum buekkense Kozur, 1984

£ £

£

Lithocampium matsuokai (Hull, 1997) Loopus doliolum Dumitrica, 1997 in Dumitrica et al. 1997

£ £

£

Hsuum brevicostatum (Ozvoldova, 1975)

£ £

£

£

Rö 257

Basal slope breccia Fig. 13

£

Droltus aV. hecatensis Pessagno & Whalen, 1982

Rö 269

Radiolarite Fig. 11

£

Droltus galerus Suzuki, 1995

Rö 268

£

Facies (2009) 55:63–87

77

Table 2 continued Sample

Rö 46

Lithology species

Debris Xow matrix Fig. 9

Sethocapsa sp. A

£

Sphaerostylus lanceola (Parona, 1890)

£

Sphaerostylus squinaboli (Tan, 1927)

Rö 262

Rö 47

Rö 244

Rö 49

Rö 257

Radiolarite Fig. 11

Basal slope breccia Fig. 13

£

£

cf. £

£

Stichocapsa naradaniensis Matsuoka, 1984

£

£

Stichocapsa robusta Matsuoka, 1984

£

£

Stichocapsa trachyostraca (Foreman, 1973)

c.

£

Stichomitra annibill Kocher, 1981

£

Stichomitra sp. D sensu Kiessling, 1999

£

Stylocapsa oblongula Kocher, 1981

£

£

cf.

£

£

Tetracapsa sp. A sensu Suzuki & Gawlick 2003

£

Tetracapsa sp. B

£

£

£

Tetracapsa sp. C sensu Auer et al., 2007

£

Theocapsomma cordis Kocher, 1981

£

Tricolocapsa sp. C sensu Auer et al., 2007

£

Tricolocapsa conexa Matsuoka, 1983

£ £

cf.

£

Tricolocapsa plicarum Yao, 1979

£ cf.

Tricolocapsa riri (O’Dogherty et al., 2005)

cf.

£

Tricolocapsa sp. S sensu Baumgartner et al., 1995b

£

Tricolocapsa undulata (Heitzer, 1930)

£

£

£ £

Tricolocapsium sp. A

£

Triversus hexagonatus (Heitzer, 1930)

£

£

Triversus hungaricus (Kozur, 1985)

£

£

Triversus japonicus Takemura, 1986

cf.

£

£

cf. cf.

£ £

£

£

Unuma gorda Hull, 1997 Williriedellum carpathicum Dumitrica, 1970

Rö 269

£

Stichocapsa convexa Yao, 1979

Tricolocapsa leiostraca (Foreman, 1973)

Rö 268

£

£ £

Williriedellum crystallinum Dumitrica, 1970

£

cf.

cf.

cf.

£

£

£

cf.

£

£

£

Williriedellum dierschei Suzuki & Gawlick, 2004 in Gawlick et al. 2004

£

£

£

Williriedellum marcucciae Cortese, 1993

£

£

£

Williriedellum sujkowskii Widz & De Wever, 1993

£

Zhamoidellum exquisitum Hull, 1997

£

Zhamoidellum kozuri (Hull, 1997)

£

Zhamoidellum ovum Dumitrica, 1970

£

Zhamoidellum ventricosum Dumitrica, 1970

£

£

£ £ £

£

£ £

£

cf.

£

£

We follow the systematics given by Baumgartner et al. (1995b), Suzuki and Gawlick (2003a). The preservation of the radiolarians in the diVerent samples depends on the diagenetic overprint, especially the compaction rate (see Figs. 7, 10, 12 for explanation)

jaccardi, Pélissié et al. (1984) infer a FAD at the end of the bimammatum zone (within the Late Oxfordian—Ogg 2004; beginning of the Late Oxfordian—Baumgartner et al. 1995b after Poitiers proceedings (1991), Gradstein et al. 1995), postdating the FAD of Labyrinthina mirabilis. In comparison, Bassoullet (1997) sets the FAD of Alveosepta jaccardi signiWcantly earlier at the beginning of the bifurc-

atus zone (Middle/Late Oxfordian boundary—Ogg (2004); Late Middle Oxfordian—Baumgartner et al. (1995a) after Poitiers proceedings (1991). From the dasycladalean algae occurring in the debris Xow, Petrascula bursiformis (Ettalon) is so far only known from the Kimmeridgian-Tithonian interval (e.g., Bucur 1999). As the species, in comparison to Labyrinthina or Alveosepta, is rather poorly

123

78

Facies (2009) 55:63–87

Fig. 10 Microfacies of the Ruhpolding Radiolarite Group of the Weitenhausgraben section. a Laminated red radiolarite to radiolarian packstone. Sample Rö 47; width of the photo 1.4 cm. b MagniWcation of a. Most radiolarians are well preserved as quartz; width of photo = 0.5 cm. c Massive reddish radiolarite from the basal part of the eastern Weitenhausgraben cirque. Radiolarian wackestone, bioturbated. Sample Rö 268; width of photo = 1.2 cm. d MagniWcation of c. Most radiolarians are Wlled with quartz and many of them are well preserved. Width of photo = 0.5 cm

recorded in the literature, more reliance should be conceded to the benthic foraminifera, especially Labyrinthina mirabilis in our case. Considering the age constraints from the radiolarian associations an extension of the FAD of Petrascula bursiformis seems inevitable. In conclusion, even with a very conservative approach taking for real the earlier of the suggested FAD of both Labyrinthina mirabilis and Alveosepta jaccardi, their Wrst appearance at maximum equals the upper limit of the time range given by the radiolarian biostratigraphy. Referring to only one of the two authors, the discrepancy between foraminifera and radiolarian biostratigraphy becomes notably more signiWcant. No matter how, the upper end of the Williriedellum dierschei subzone within the Zhamoidellum ovum zone, originally thought to be at the end of the Early Oxfordian (Suzuki and Gawlick 2003a, b, following Baumgartner et al. 1995a), and recently shifted to the Middle Oxfordian (Suzuki et al. 2004 according to Beccaro 2004) must probably be expanded to some extend, around the boundary of Middle/Late Oxfordian (transversarium zone or bifurcatus zone). This goes in hand with an equivalent shortage of the Eucyrtidiellum unumaense – Podocapsa amphitreptera interval zone (Fig. 15; see Suzuki and Gawlick 2003a for comparison). The determination of the exact position of the subzone borderline depends directly on the accuracy of the foraminifera⬘s FAD which, as demonstrated above, is still controversial and is to be tested. Radiolarian species within the Rettenstein samples, as yet thought to terminate in the Middle Oxfordian and now directly aVected by this probable expansion of the Williri-

123

Fig. 11 Radiolarian fauna of the Ruhpolding Radiolarite Group (samples 䉴 Rö 47, Rö 244, Rö 268 and Rö 269, see Fig. 5 for location; scale bars equal to 30 m): 1 Archaeodictyomitra mirabilis Aita, 1987; Rö 47; 2 Archaeodictyomitra mitra Dumitrica et al. 1997 in Dumitrica et al. 1997; Rö 47; 3 Archaeodictyomitra sixi Yang, 1993; Rö 47; 4 Archaeospongoprunum sp.; Rö 268; 5 Cinguloturris carpatica Dumitrica and Mello 1982 in Dumitrica and Mello 1982; Rö 47; 6 Dictyomitrella cf. kamoensis Mizutani and Kido, 1983; Rö 268; 7 Droltus galerus Suzuki, 1995; Rö 47; 8 Eucyrtidiellum nodosum Wakita, 1988; Rö 47; 9 Eucyrtidiellum ptyctum (Riedel and SanWlippo, 1974); Rö 47; 10 Eucyrtidiellum takemurai Hull, 1997; Rö 47; 11 Eucyrtidiellum unumaense (Yao, 1979); Rö 47; 12 Fultacapsa sp.; Rö 268; 13 Gongylothorax favosus Dumitrica, 1970; Rö 269; 14 Gongylothorax aV. favosus Dumitrica, 1970; Rö 47; 15 Hiscocapsa acuta Hull, 1997; Rö 269; 16 Hsuum cf. brevicostatum (Ozvoldova, 1975); Rö 47; 17 Hsuum maxwelli Pessagno, 1977; Rö 47; 18 Lithocampium matsuokai (Hull, 1997); Rö 47; 19 Parahsuum sp.; Rö 268; 20 Parvifavus sp.; Rö 268; 21 Podobursa sp. A; Rö 47; 22 Praewilliriedellum spinosum Kozur, 1984; Rö 47; 23 Praewilliriedellum sp. B; Rö 268; 24 Praezhamoidellum cf. parvipora (Tan, 1927); Rö 268; 25 Praezhamoidellum yaoi Kozur, 1984; Rö 269; 26 Protunuma multicostatus (Heitzer, 1930); Rö 268; 27 Pseudodictyomitra cf. primitiva Matsuoka and Yao, 1985; Rö 268; 28 Pseudodictyomitra sp. D sensu Matsuoka and Yao, 1985; Rö 47; 29 Sethocapsa sp.; Rö 47; 30 Stichocapsa naradaniensis Matsuoka, 1984; Rö 47; 31 Stichomitra annibill Kocher, 1981; Rö 47; 32 Stylocapsa sp.; Rö 269; 33 Tetracapsa sp. A sensu Suzuki and Gawlick 2003a, b; Rö 268; 34 Tetracapsa sp. C sensu Auer et al., 2007; Rö 268; 35 Tricolocapsa cf. leiostraca (Foreman, 1973); Rö 244; 36 Tricolocapsa cf. plicarum Yao, 1979; Rö 269; 37 Tricolocapsa undulata (Heitzer, 1930); Rö 47; 38 Tricolocapsa sp. C sensu Auer et al., 2007; Rö 47; 39 Triversus hexagonatus (Heitzer, 1930); Rö 47; 40 Triversus hungaricus (Kozur, 1985); Rö 268; 41 Triversus japonicus Takemura, 1986; Rö 47; 42 Unuma sp.; Rö 268; 43 Williriedellum cf. carpathicum Dumitrica, 1970; Rö 47; 44 Williriedellum crystallinum Dumitrica, 1970; Rö 268; 45 Williriedellum dierschei Suzuki et al. 2004; Rö 47; 46 Williriedellum marcucciae Cortese, 1993; Rö 47; 47 Williriedellum sujkowskii Widz and De Wever, 1993; Rö 269; 48 Wrangellium sp.; Rö 268; 49 Zhamoidellum kozuri (Hull, 1997); Rö 47; 50 Zhamoidellum ovum Dumitrica, 1970; Rö 47

Facies (2009) 55:63–87

79

123

80

Facies (2009) 55:63–87

Fig. 11 continued Fig. 12 Basal Plassen Formation: a Slope breccia rich in ooids with radiolarians in the matrix (sample Rö 49). b Alternating pure radiolarite and allodapic limestone layers (sample Rö 50). Original width = 1.4 cm in both cases

edellum dierschei subzone, are: Eucyrtidiellum unumaense pustulatum Baumgartner; Eucyrtidiellum unumaense unumaense (Yao), Williriedellum dierschei Suzuki and Gawlick, and Williriedellum marcucciae Cortese (see also Beccaro 2004, 2006). Summarizing the age range shifts for some radiolarian species in the Northern Calcareous Alps (e.g., Gawlick and Suzuki 1999, Suzuki and Gawlick 2003a, b; Suzuki et al. 2004, Missoni et al. 2005, Gawlick et al. 2007a) and other Alpine regions (e.g., O’Dogherty et al. 2005) used for the UAZones95 of Baumgartner et al. (1995a), following species reach also the age around the Middle/Late Oxfordian boundary or the Late Oxfordian: Archaeodictyomitra amabilis Aita, Archaeodictyomitra mirabilis Aita, Dictyomitrella kamoensis Mizutani and Kido, Eucyrtidiellum semifactum Nagai and Mizutani, Gongylothorax aV. favosus Dumitrica, Stichocapsa naradaniensis Matsuoka, Stichocapsa robusta Matsuoka, Stylocapsa oblongula Kocher, Theocapsomma cordis Kocher, Tricolocapsa conexa Matsuoka and Unuma gorda Hull (see Fig. 15).

123

Indications for Oxfordian shallow-water sedimentation from other locations First evidence for shallow-water carbonate production in the Northern Calcareous Alps is found in allodapic limestones and microbreccias in the basal part of the Tauglboden Formation (Fig. 16). The occurrence of shallow-water material was described particularly above the turnover from red radiolarite (Fludergraben Member—see Fig. 2) to greyish-black laminated calcareous radiolarite sedimentation, for example within the Tauglboden Formation of the type locality in the Tauglboden valley in the Salzburg Calcareous Alps (Gawlick et al. 1999b; Gawlick and Frisch 2003), the Fludergraben-Knerzenalm area in the Salzkammergut region (Gawlick et al. 2007a), but also in the red radiolaritic succession of the Mount Katrin region in the Salzkammergut west of Bad Ischl (Auer et al. 2006a). The Early/ Middle Oxfordian age of these sediments was not only ground on radiolarians of the background sediments but was constrained by ammonites or aptychi of the underlying

Facies (2009) 55:63–87

81

Fig. 13 Radiolarian Fauna of the siliceous horizons of the basal Plassen Formation (samples Rö 49 and Rö 257; scale bars equal to 30 m): 1 Archaeodictyomitra sp.; Rö 49; 2 Dictyomitrella sp.; Rö 49; 3 Eucyrtidiellum cf. nodosum Wakita, 1988; Rö 49; 4 Eucyrtidiellum ptyctum (Riedel and SanWlippo, 1974); Rö 49; 5 Eucyrtidiellum unumaense (Yao, 1979); Rö 49; 6 Gongylothorax aV. favosus Dumitrica, 1970; Rö 49; 7 Gongylothorax cf. favosus Dumitrica, 1970; Rö 49; 8 Gorgansium xigazeense Wu, 1993; Rö 49; 9 Hiscocapsa sp.; Rö 49; 10 Loopus doliolum Dumitrica et al. 1997; Rö 49; 11 Praezhamoidellum aV. buek-

kense Kozur, 1984; Rö 49; 12 Praezhamoidellum cf. yaoi Kozur, 1984; Rö 49; 13 Tetracapsa sp.; Rö 257; 14 Tricolocapsa leiostraca (Foreman, 1973); Rö 49; 15 Tricolocapsa cf. undulata (Heitzer, 1930); Rö 49; 16 Tritrabs sp.; Rö 49; 17 Triversus cf. hexagonatus (Heitzer, 1930); Rö 49; 18 Triversus hungaricus (Kozur, 1985); Rö 49; 19 Williriedellum carpathicum Dumitrica, 1970; Rö 49; 20 Williriedellum cf. dierschei Suzuki et al. 2004; Rö 49; 21 Williriedellum sujkowskii Widz and De Wever, 1993; Rö 257; 22 Zhamoidellum ovum Dumitrica, 1970; Rö 257

red limestone, too. These gave an Oxfordian (Huckriede 1971: Tauglboden valley—section Urbangraben) or a Latest Callovian to Earliest Oxfordian age (Mandl 1982: Fludergraben valley), respectively. The radiolarian assemblages at these locations Wt into the Williriedellum dierschei subzone of the Zhamoidellum ovum zone, corresponding to an Early to Middle Oxfordian (Gawlick 2000; Beccaro 2004; Suzuki et al. 2004; Auer et al. 2006b; Gawlick et al.

2007a) or, according to the new Wndings presented in this paper, an even slightly younger age. In contrast to Mount Rettenstein, the age of the Wrst shallow-water carbonates in the basal part of the Tauglboden Formation cannot be proved independently by the occurrence of shallow-water organism. Only micrite clasts, peloids and some small, indeterminable remnants of shallow-water organism occur in these allodapic limestones. In

123

82

Facies (2009) 55:63–87

Fig. 14 The most important microfossil of the Rettenstein Debris Flow: Labyrinthina mirabilis Weynschenk, 1951 in variously orientated sections: a Fragment of Labyrinthina mirabilis forming the core of an ooid (sample Rö 46). b Transverse section (sample Rö 54). c Subaxial section of an enrolled specimen (sample Rö 54). Scale bars equal to 0.5 mm (a, c) and 0.25 mm (b), respectively

addition yellowish brown ooids have been described from microbreccias of the Knallalm-Neualm area of the northwestern Dachstein Block (Auer et al. 2007). Despite the lack of datable biogens, these more northern occurrences undoubtedly prove some kind of embryonic Late Jurassic carbonate platform sedimentation in the Northern Calcareous Alps in the Oxfordian. Interestingly in the younger parts (Kimmeridgian to Early Tithonian) of the Tauglboden Formation shallow-water carbonate clasts of the Plassen Carbonate Platform are missing, re-occurring in the component spectrum no earlier than Late Early Tithonian. Early evolution of the Plassen Carbonate Platform Mount Rettenstein yields an important hint on the earliest phase of the Plassen Carbonate Platform evolution. In most places with continuous Late Jurassic series from the siliceous basin to the shallow-water carbonate platform stage, the shallowing-upward process did not start earlier than Early Kimmeridgian and the change in the sediments was

123

rather gradual (e.g., Schlagintweit et al. 2003; Gawlick et al. 2004). Typically these transitional successions are characterized by a successive trend from siliceous to calcareous deposition and the occurrence of (hemi-)pelagic carbonates with protoglobigerines and Saccocoma (Schlagintweit et al. 2003: Mount Plassen; Gawlick et al. 2004: Mount Krahstein). Apparently, all the gradual basinto-platform successions preserved yield examples of a later platform progradation stage due to their more distal position relative to the nucleus of platform growth. The initial Plassen Carbonate Platform could so far only be reconstructed by the analysis of redeposits within massXow deposits and allodapic limestones in radiolaritic sediments. Therefore the Weitenhausgraben Section is of immense interest because of its deWnite biostratigraphic evidence for an evolution of the Plassen Carbonate Platform already in the Oxfordian. The radiolaritic matrix in the upper (and accessorily in the lower) debris Xow prove the deposition of the Rettenstein Debris Flow in a deepwater environment. At the same time this situation with

Facies (2009) 55:63–87

83

Fig. 15 ModiWed zonation for the radiolarians of the Northern Calcareous Alps. According to Suzuki and Gawlick (2003a), with a shift of upper limit of the Williriedellum dierschei subzone/the lower limit of the Eucyrtidiellum unumaense – Podocapsa amphitreptera interval zone at minimum up to the boundary Middle/Late Oxfordian or even higher, depending on the source of foraminifera biostratigraphical data applied (see text for discussion). For comparison the radiolarian zonations after Beccaro (2004, 2006) and Baumgartner et al. (1995a) with a shift of the radiolarian ranges to Late Oxfordian

neritic resediments and pelagic sediments next to each other suggests a considerable morphology, fairly strong relief and/or far horizontal transport distances. The age determinations of shallow-water organisms within the components and of radiolarians of the siliceous matrix constrain a debris Xow emplacement probably shortly after the boundary of the Middle to the Late Oxfordian. Apparently, regions with water depths shallow enough for the establishment of ooid bars and stromatoporoid-coral patch reefs have locally existed already at this early stage whilst in other places the continuous, steady decrease in depositional depth had not even started. In addition, the radiolarian associations within the resediments and the radiolarite intercalations of the basal Plassen Formation evidence an extraordinary early, pre-Kimmeridgian settling of shallow-water conditions not only for the supply area of

the Rettenstein Debris Flow but also for the Plassen Carbonate Platform of the Rettenstein itself. This is signiWcantly earlier than in any other place of the Upper Tirolic unit, where the shallowing-upward sequence is accounted an Early Kimmeridgian and the shallow-water limestones a Late Kimmeridgian age (Schlagintweit et al. 2003: Mount Plassen; Gawlick et al. 2004: Mount Krahstein). Interestingly, a similar Latest Oxfordian? to Earliest Kimmeridgian supply area also including ooid bars and coral-stromatoporoid patches has recently been suggested for the palaeogeographically northernmost occurrence of the Plassen Carbonate Platform at the locations Drei Brüder and Mount Bürgl near lake Wolfgangsee (Gawlick et al. 2007b). However, the biostratigraphic control of the initial platform stadium of the so-called Brunnwinkl Rise is, in comparison to Mount Rettenstein, not really conclusive.

123

84

Facies (2009) 55:63–87

Fig. 16 Oxfordian shallow-water carbonate debris in the Tauglboden Formation. a Allodapic limestone with erosive contact within laminated black radiolarites. Basal Tauglboden Formation; sample TB 8/2001, Tauglboden valley; width of the photo = 1.4 cm. b MagniWcation of a. Micrite clasts and peloids are dominating, determinable shallow-water organisms are missing; width of photo = 0.5 cm. c Allodapic limestones with erosive contact in Early/Middle Oxfordian Tauglboden Formation of the Fludergraben-Knerzenalm section; sample D 13-1, Knerzenalm; width of the photo 1.4 cm. d MagniWcation of c. Micrite clasts, recrystallized clasts and peloids dominate over Triassic clasts – no determinable shallow-water organisms. Width of photo = 0.5 cm

The similarities in litho- and biofacies between the Rettenstein Debris Flow and the slope breccias of the basal Plassen Formation are manifest. Nevertheless, there must have been considerable time between the deposition of these similar gravitational Xow successions, regarding the rather low sedimentation rates and the enormous compaction potential of radiolarites. Probably, this situation is best explained by assuming one single, extraordinary event for the Rettenstein Debris Flow, leading to far distance transport of material from the initial platform. In contrast, the breccias above the radiolarite can be regarded as part of the “normal”, regional-scale progradation of the Plassen Carbonate Platform and the associated shallowing-upward process. The only very thin slope breccia deposits of the lowermost Plassen Formation and the rapid start of forereef sedimentation with stromatoporoid and coral detritus indicate the existence of a rather steep slope. The formation of a by-pass margin seems to be a reasonable explanation for some of the observations, such as the lack of pelagic to hemipelagic transitional carbonates, the extremely thin slope breccia deposits, and the individual occurrence of the debris Xow a long time before the arrival of the actual front of the prograding carbonate platform.

early Late Oxfordian is a period with particularly rapid sealevel Xuctuations (e.g., Haq et al. 1987) allowing the production of the most reef sites per million years in the whole Jurassic (Leinfelder et al. 2002 according to the reef database of Kiessling and Flügel 2002). In the early Late Oxfordian, however, the number of reef sites decreased rapidly. This overall trend in reef evolution might be the original cause for the occurrence of the Rettenstein Debris Flow. The age gathered from direct dating of the Rettenstein Debris Flow correlates closely with the climax of reef sites around the Middle/Late Oxfordian boundary (Leinfelder et al. 2002) on the basis of the recalibrated sea-level curve of Haq et al. (1987) and Gradstein et al. (1995). The rapid decrease of reef sites might also be reXected in the abortion of initial carbonate platform formation and the concomitant prevalence of radiolaritic basin sedimentation, which is not only seen at Mount Rettenstein but indicated on a regional scale in Oxfordian resediments, too. Probably a combination of both a worldwide decrease in carbonate production and tectonics-induced subsidence of the sedimentary basins and rises in the Northern Calcareous Alps resulted in the drowning of the small precursor platform of the Late Oxfordian/Kimmeridgian to Berriasian Plassen Carbonate Platform.

Controlling factors for Oxfordian carbonate platform formation: sea-level changes versus tectonics Conclusions and outlook According to Leinfelder et al. (2002), Jurassic reefs do not mirror the long-term sea-level changes but mostly match well with third-order transgressive episodes. The Middle to

123

1. The Rettenstein Debris Flow, which underlies radiolarites of the Ruhpolding Radiolarite Group, yields

Facies (2009) 55:63–87

direct evidence for an initial stage of Late Jurassic shallow-water carbonate platform sedimentation with the occurrence of ooid bars and coral-stromatoporoid patch reefs since approximately the Middle/Late Oxfordian boundary. 2. Progradation of the Plassen Carbonate Platform over the radiolarite basin occurred at Mount Rettenstein already in the Late Oxfordian and thus earlier than at any other known locations in the Northern Calcareous Alps with complete Late Jurassic stratigraphic sections. 3. At Mount Rettenstein shallow-water levels were apparently reached rapidly during platform progradation. This is indicated by the lack of transitional (hemi-) pelagic carbonates and the only very thin slope facies succession of the Plassen Formation, which is in line with a fast progradation and the formation of a steep slope. 4. Stratigraphic correlations of radiolarians and shallowwater organisms result in a modiWcation of the stratigraphic ranges of characteristic Oxfordian radiolarian species and the biostratigraphic zones, respectively, towards younger times. The exact position of the borderline in the Middle to Late Oxfordian has to be tested. Summarizing, Mount Rettenstein with its unique Oxfordian stratigraphic section yields an important input for the understanding of the early history of the Plassen Carbonate Platform and its palaeoenvironment. Moreover, due to this uniqueness the Middle to Late Oxfordian Mount Rettenstein succession is of immense importance for palaeogeographic considerations. This, and the complex structural situation of the isolated, rootless Jurassic occurrence is beyond the scope of this stratigraphy-focused article and will be depicted and discussed elsewhere. Acknowledgments The work for this article was funded by the Austrian FWF (Fonds zur Förderung der wissenschaftlichen Forschung), project P16812 „Evolution of the Late Jurassic carbonate platform of the Northern Calcareous Alps”. The REM pictures were taken at the Institute of Geology and Palaeontology of the University of Tübingen. Hartmut Schulz supervised the microscope sessions and was the guarantor of a smooth process. The repeated fruitful discussions on the stratigraphic table of the Jurassic of the Northern Calcareous Alps with Leopold Krystyn and Richard Lein (both University of Vienna) are gratefully acknowledged. Very helpful comments and ideas of two anonymous reviewers helped to improve the manuscript.

References Aita Y (1987) Middle Jurassic to Lower Cretaceous radiolarian biostratigraphy of Shikoku with reference to selected sections in Lombardy Basin and Sicily. Sci Rep Tohoku Univ Ser 2 Geol 58:1–91 von Alth A (1882) Die Versteinerungen des Nizniower Kalksteines. Beitr Palaont Oesterr-Ung I:183–332

85 Auer M, Gawlick H-J, Suzuki H (2006a) Die Unter-Oxford-RadiolaritMegabrekzie am Nordrand des Dachstein-Blockes (Nördliche Kalkalpen, Österreich): Radiolarienfaunen, Mikrofazies des Komponentenbestandes und tektonische Bedeutung. Jb Geol B-A 146(1+2):33–51 Auer M, Gawlick H-J, Schlagintweit F (2006b) Mount Rettenstein southwest of the Dachstein Massif – a structurally controlled, isolated occurrence of Jurassic strata at the southern rim of the Northern Calcareous Alps. In: Tessadri-Wackerle M (ed): PANGEO Austria 2006, Conference Series, Innsbruck University Press, Innsbruck, p 7-8 Auer M, Suzuki H, Schlagintweit F, Gawlick H-J (2007) The Late Middle to Late Jurassic sedimentary rocks of the Knallalm-Neualm Area north of Gosau (northwestern Dachstein Block, central Northern Calcareous Alps). J Alp Geol 48:117–140 Bassoullet JP (1997) Les grands foraminifères. In: Cariou E, Hantzpergue P (coord) Biostratigraphie du Jurassique Ouest-Européen et Méditerranéen, Bull Centres Rech Explor-Prod Elf-Aquitaine Mém 17:293-304 Bassoullet JP, Fourcade E (1979) Essai de synthèse de répartition de Foraminifères benthiques du Jurassique carbonaté mésogéen. C R somm Soc geol Fr 2:69–71 Baumgartner PO (1980) Late Jurassic Hagiastridae and Patulibracchiidae (Radiolaria) from the Argolis Peninsula (Peloponnesus, Greece). Micropaleont 26:274–322. doi:10.2307/1485315 Baumgartner PO (1984) A Middle Jurassic–Early Cretaceous low-latitude radiolarian zonation based on Unitary Associations and age of Tethyan radiolarites. Eclogae Geol Helv 77(3):729–837 Baumgartner PO, Bartolini A, Carter ES, Conti M, Cortese G, Danelian T, et al. (1995a) Middle Jurassic to Early Cretaceous radiolarian biochronology of Tethys based on Unitary Associations. In: Baumgartner PO, O’Dogherty L, Gorican S, Urquhart E, Pillevuit A, De Wever P (eds) Middle Jurassic to Lower Cretaceous Radiolaria of Tethys: occurrences, systematics, biochronology. Mém de Géol (Lausanne) 23:1013-1048 Baumgartner PO, O’Dogherty L, Gorican S, Dumitrica-Jud R, Dumitrica P, Pillevuit A, et al. (1995b) Radiolarian catalogue and systematics of Middle Jurassic to Early Cretaceous Tethyan genera and species. In: Baumgartner PO, O’Dogherty L, Gorican S, Urquhart E, Pillevuit A, De Wever P (eds) Middle Jurassic to Lower Cretaceous Radiolaria of Tethys: Occurrences, Systematics, Biochronology. Mém de Géol (Lausanne) 23:37-685 Beccaro P (2004) Upper Jurassic radiolarians from Inici Mountain area (Northwestern Sicily, Italy): biochronology and calibration by ammonites. Riv It Pal Strat 110(1):289–301 Beccaro P (2006) Radiolarian correlation of Jurassic siliceous successions of the Rosso Ammonitico Formation in the Southern Alps and Western Sicily (Italy). Eclogae Geol Helv 99(Suppl 1):21–33. doi:10.1007/s00015-006-0607-0 Bucur II (1999) Stratigraphic signiWcance of some skeletal algae (Dasycladales, Caulerpales) of the Phanerozoic. In: Farinacci A, Lord AR (eds) Depositional episodes and bioevents. Palaeopelagos Spec Publ 2:53-104 Carozzi A (1954) L’organisme “C” J. Favre (1927) est une Vaginella portlandienne. Arch Sci 7(2):107–111 Chiari M, Marcucci M, Prela M (2002) New species of Jurassic radiolarians in the sedimentary cover of ophiolites in the Mirdita area, Albania. Micropaleont 48(Suppl 1):61–87 Cortese G (1993) Radiolarian biostratigraphy of the Tuscan Cherts (Tuscan Succession) from Val di Lima, Tuscany, Northern Apennines. Paleopelagos 3:169–189 De Wever P (1981) Une nouvelle sous-famille, les Poulpinae, et quatre nouvelles espèces de Saitoum radiolaires mésozoiques téthysiens. Geobios 14:5–15. doi:10.1016/S0016-6995(81)80163-5 Diersche V (1980) Die Radiolarite des Oberjura im Mittelabschnitt der Nördlichen Kalkalpen. Geotekt Forsch 58:1–217

123

86 Dumitrica P (1970) Cryptocephalic and cryptothoracic Nasselaria in Mesozoic deposits, Romania. Rev Roum Geol Geophys Geogr Ser Geol 14:45–124 Dumitrica P, Mello J (1982) On the age of the Meliata Group and the Silica Nappe radiolarites (localities Drzkovce and Bohunova, Slovak Karst, CSSR). Geol prace 77:17–28 Dumitrica P, Immenhauser A, Dumitrica-Jud R (1997) Mesozoic radiolarian biostratigraphy from Masirah ophiolite, Sultanate of Oman. Part I: Middle Triassic, uppermost Jurassic and Lower Cretaceous spumellarians and multisegmented nassellarians. Bull Nat Mus Nat Sci Taiwan 9:1–106 Elliott GF (1956) Further records of fossil calcareous algae from the Middle East. Micropaleont 2/4:327–334. doi:10.2307/1484348 Ettalon A (1858) Études paléontologiques sur les terrains jurassiques du Haut-Jura. Monographie de l’étage corallien. Mém Soc Emul Doubs 3 vol III et IV:317 p Foreman HP (1973) Radiolaria from DSDP Leg 20. In: Heezen BC, MacGregor JD et al. (eds) Init Rep Deep Sea Drill Proj 20:249305 Foury G, Vincent E (1967) Morphologie et répartition stratigraphique du genre Kiliana Pfender (Foraminifère). Eclogae Geol Helv 60(1):33–45 Frisch W, Gawlick H-J (2003) The nappe structure of the central Northern Calcareous Alps and its disintegration during Miocene tectonic extrusion–a contribution to understanding the orogenic evolution of the Eastern Alps. Int J Earth Sci 92:712–727 Ganss O, Kümel F, Spengler E (1954) Erläuterungen zur geologischen Karte der Dachsteingruppe. Wiss Alpenvereinsh 15:1–82 Gawlick H-J (2000) Die Radiolaritbecken in den Nördlichen Kalkalpen (hoher Mittel-Jura, Ober-Jura). Mitt Ges Geol Bergbaustud Österr 44:97–156 Gawlick H-J, Frisch W (2003) The Middle to Late Jurassic clastic radiolaritic Xysch sediments in the Northern Calcareous Alps: sedimentology, basin evolution, and tectonics—an overview. N Jb Geol Paläont Abh 230(2/3):163–213 Gawlick H-J, Suzuki H (1999) Zur stratigraphischen Stellung der Strubbergschichten in den Nördlichen Kalkalpen (Callovium– Oxfordium). N Jb Geol Paläont Abh 211:233–262 Gawlick H-J, Frisch W, Vecsei A, Steiger T, Böhm F (1999a) The change from rifting to thrusting in the Northern Calcareous Alps as recorded in Jurassic sediments. Geol Rdschau 87:644–657. doi:10.1007/s005310050237 Gawlick H-J, Suzuki H, Vortisch W, Wegerer E (1999b) Zur stratigraphischen Stellung der Tauglbodenschichten an der Typlokalität in der Osterhorngruppe (Nördliche Kalkalpen, Ober-Oxfordium— Unter-Tithonium). Mitt Ges Geol Bergbaustud Osterr 42:1–20 Gawlick H-J, Schlagintweit F, Ebli O, Suzuki H (2004) Die PlassenFormation (Kimmeridgium) des Krahstein (Steirisches Salzkammergut, Österreich) und ihre Unterlagerung: neue Daten zur Fazies, Biostratigraphie und Sedimentologie. Zbl Geol Pal Teil I 2003(3/4):295–334 Gawlick H-J, Schlagintweit F, Suzuki H (2007a) Die Ober-Jura bis Unter-Kreide Schichtfolge des Gebietes Sandling-Höherstein (Salzkammergut, Österreich)–Implikationen zur Rekonstruktion des Block-Puzzles der zentralen Nördlichen Kalkalpen, der Gliederung der karbonatklastischen RadiolaritXyschbecken und der Entwicklung der Plassen-Karbonatplattform. N Jb Geol Pal Abh 243(1):1–70. doi:10.1127/0077-7749/2007/0243-0001 Gawlick H-J, Schlagintweit F, Missoni S (2007b) Das Ober-Jura Seichtwasser-Karbonat Vorkommen der Drei Brüder am Wolfgangsee (Österreich): das westlichste Vorkommen der Wolfgangsee-Karbonatplattform südlich der Brunnwinkel-Schwelle am Nordrand des Tauglboden-Beckens. J Alp Geol 48:83–100 Gradstein FM, Agterberg FB, Ogg JG, Hardenbol J, van Veen P, Thierry J et al (1995) A Triassic, Jurassic and Cretaceous timescale. In: Berggren W, Kent DV, Aubry MP, Hardenbol J (eds) Geo-

123

Facies (2009) 55:63–87 chronology, Time Scales and Global Stratigraphic Correlation. SEPM Spec Publ 54:95–126 Grill J, Kozur H (1986) The Wrst evidence of the Unuma echinatus radiolarian zone in the Rudabánya Mts (northern Hungary). Geol Palaont Mitt Innsbruck 13:239–275 Haq BU, Hardenbol J, Vail PR (1987) Chronology of Xuctuating sea levels since the Triassic. Science 235:1156–1167 Medline. doi:10.1126/science.235.4793.1156 Heitzer I (1930) Die Radiolarienfauna der mitteljurassischen Kieselmergel im Sonnwendgebirge. Jb Geol B-A 80:381–406 Hirschberg K, Jacobshagen V (1965) Stratigraphische Kondensation in Adnether Kalken am Rötelstein bei Filzmoos (Salzburger Kalkalpen). Verh Geol B-A 1965:33–42 Hori N (1999) Latest Jurassic radiolarians from the northeastern part of the Torinoko Block, Yamizo Mountains, central Japan. Sci Rep Inst Geosci Univ Tsukuba Sec B 20:47–114 Huckriede R (1971) Rhyncholithen-Anreicherung (Oxfordium) an der Basis des Älteren Radiolarits der Salzburger Kalkalpen. Geologica Palaeontologica 5:131–147 Hull DM (1997) Upper Jurassic Tethyan and southern Boreal radiolarians from western North America. Micropaleontology Suppl 2:1–202 Kemkin IV, Taketani Y (2004) New radiolarian species from Late Jurassic chert-terrigenous deposits of the Taukha Terrane, Southern Sikhote-Alin. Paleontological Res 8:325–336. doi:10.2517/ prpsj.8.325 Kiessling W (1999) Late Jurassic radiolarians from the Antarctic Peninsula. Micropaleont 45(Suppl 1):1–96. doi:10.2307/1486097 Kiessling W, Flügel H (2002) Paleoreefs–a database on Panerozoic reefs. SEPM Spec Publ 72:77–92 Kocher RN (1981) Biochronostratigraphische Untersuchungen oberjurassischer radiolarienführender Gesteine, insbesondere der Südalpen. Mitt Geol Inst ETH Univ Zurich NF 234:1–184 Kozur H (1984) New radiolarian taxa from the Triassic and Jurassic. Geol Palaont Mitt Innsbruck 13:49–88 Kozur H (1985) The radiolarian genus Eoxitus n. gen. from the Unuma echinatus zone (Bajocian) of the northern Hungary. Proc Konink Nederl Akad Wetenschappen Ser B 88:211–220 Lein R (1976) Neue Ergebnisse über die Stellung und Stratigraphie der Hallstätter Zone südlich der Dachsteindecke. Sitzber österr Akad Wiss math-natw Kl Abt 1 184:197-235 Leinfelder RR, Schmid DU, Nose M, Werner W (2002) Jurassic reef patterns–the expression of a changing globe. SEPM Spec Publ 72:465–520 Mandl GW (1982) Jurassische Gleittektonik im Bereich der Hallstätter Zone zwischen Bad Ischl und Bad Aussee (Salzkammergut, Österreich). Mitt Ges Geol Bergbaustud Österr 28:55–76 Matsuoka A (1983) Middle and Late Jurassic radiolarian biostratigraphy in the Sakawa and adjacent areas, Shikoku, Southwest Japan. J Geosci Osaka City Univ 26:1–48 Matsuoka A (1984) Late Jurassic four-segmented nasselarians (Radiolaria) from Strikoku, Japan. J Geosci Osaka City Univ 27:143– 153 Matsuoka A (1986) Tricolocapsa yaoi assemblage (Late Jurassic radiolarians) from the Togano Group in Shikoku, southwest Japan. J Geosci Osaka City Univ 29:101–115 Matsuoka A, Yao A (1985) Latest Jurassic radiolarians from the Torinosu Group in Southwest Japan. J Geosci Osaka City Univ 28:125–145 Meister C, Böhm F (1993) Austroalpine Liassic ammonites from the Adnet Formation (Northern Calcareous Alps). Jb Geol B-A 136(1):163–211 Misik M, Sotak J, Ziegler V (1999) Serpulid worms Mercierella Fauvel, Durandella Dragastan and Carpathiella nov. gen. from the Jurassic, Cretaceous and Paleogene of the Western Carpathians. Geol Carpath 50(4):305–312

Facies (2009) 55:63–87 Missoni S (2003) Analyse der mittel- und oberjurassischen Beckenentwicklung in den Berchtesgadener Kalkalpen – Stratigraphie, Fazies und Paläogeographie. PhD Thesis Univ Leoben: 150 pp Missoni S, Schlagintweit F, Suzuki H, Gawlick H-J (2001) Die oberjurassische Karbonatplattformentwicklung im Bereich der Berchtesgadener Kalkalpen (Deutschland)–eine Rekonstruktion auf der Basis von Untersuchungen polymikter Brekzienkörper in pelagischen Kieselsedimenten (Sillenkopf-Formation). Zbl Geol Palaont 2000(1/2):117–143 Missoni S, Gawlick H-J, Suzuki H, Diersche V (2005) Die paläogeographische Stellung des Watzmann Blockes in den Berchtesgadener Kalkalpen–Neuergebnisse auf der Basis der Analyse der Trias- und Jura-Entwicklung. J Alp Geol 47:169–209 Mizutani S (1981) A Jurassic formation in the Hida-Kanayama area, central Japan. Bull Mizunami Fossil Mus 8:147–190 Mizutani S, Kido S (1983) Radiolarians in Middle Jurassic siliceous shale from Kamiasa, Gifu Prefecture, Central Japan. Trans Proc Palaeont Soc Jpn NS 132:253–263 Nagai H, Mizutani S (1990) Jurassic Eucyrtidiellum (Radiolaria) in the Mino Terrane. Trans Proc Palaeont Soc Jpn NS 159:587–602 O’Dogherty L, Bill M, Gorican S, Dumitrica P, Masson H (2005) Bathonian radiolarians from an ophiolitic mélange of the Alpine Tethys (Gets Nappe, Swiss-French Alps). Micropalaeont 51:435–485 Ogg JG (2004) The Jurassic period. In: Gradstein FM, Ogg JG, Smith AG (eds) A geologic time scale 2004: 307-343 Ozvoldova L (1975) Upper Jurassic radiolarians from the Kisuca Series in the Klippen Belt. Zapadne Karpaty Ser Paleont 1:73–86 Parona CF (1890) Radiolarie nei noduli selciosi del calcare Giurese di Cittiglio presso Laverno. Boll Soc Geol Ital 9:132–175 Pélissié T, Peybernes B, Rey J (1984) Les grands foraminfères benthiques du Jurassique Moyen/Supérieur du Sud-Oust de la France (Aquitaine, Causses, Pyrénées). Interet Biostratigraphique, Paléoécologique et Paléobiogéographique. Benthos ⬘83, 2nd Int Symp Benthic Foraminifera (Pau, April 1983), pp 479-489 Pessagno EA Jr (1977) Upper Jurassic Radiolaria and radiolarian biostratigraphy of the California coast ranges. Micropaleont 23:56– 113. doi:10.2307/1485310 Pessagno EA Jr, Whalen PA (1982) Lower and Middle Jurassic Radiolaria (multicyrtid Nassellariina) from California, east-central Oregon and the Queen Charlotte Islands. B·C. Micropaleont 28:111– 169. doi:10.2307/1485228 Riedel WR, SanWlippo A (1974) Radiolaria from the Southern Indian Ocean, DSDP Leg 26. In: Davis TA, Luyendyk BP et al. (eds) Init Rep Deep Sea Drill Proj 26:771-814 Schlagintweit F, Gawlick H-J, Lein R (2003) Die Plassen-Formation der Typlokalität (Salzkammergut, Österreich)–neue Daten zur Fazies, Sedimentologie und Stratigraphie. Mitt Ges Geol Bergbaustud Osterr 46:1–34 Schlagintweit F, Gawlick H-J, Lein R (2005) Mikropaläontologie und Biostratigraphie der Plassen-Karbonatplattform der Typlokalität (Ober-Jura bis Unter-Kreide, Salzkammergut, Österreich). J Alpine Geol/Mitt Ges Geol Bergbaustud Österreich 47:11–102 Schlagintweit F, Auer M, Gawlick H-J, Suzuki H (2006) Die Plassenkarbonatplattform (Kimmeridgium) des Rettenstein bei Filzmoos (Salzburger Land): Neue Daten zur Faziesentwicklung und Stratigraphie. In: Tessadri-Wackerle M (ed) PANGEO Austria 2006 Conference Series Innsbruck University Press, pp 304-305 Schlagintweit F, Auer M, Gawlick H-J (2007) Reophax? rhaxelloides n. sp., a new benthic foraminifer from Late Jurassic reefal limestones of the Northern Calcareous Alps (Austria). J Alp Geol 48:57–69

87 Schrodt F (1894) Das Vorkommen der Foraminiferen-Gattung Cyclammina im oberen Jura. Z Dtsch Geol Ges 45:733–735 Spengler E (1943) Über den geologischen Bau des Rettensteins (Dachsteingruppe). Mitt Reichsamts Bodenforsch Zweigst Wien 5:55–66 Steiger T (1992) Systematik, Stratigraphie und Palökologie der Radiolarien des Oberjura-Unterkreide-Grenzbereiches im OsterhornTirolikum (Nördliche Kalkalpen, Salzburg und Bayern). Zitteliana 19:1–188 Suzuki H (1995) Frühjurassische Radiolarienfauna aus dem mesozoischen akkretierten Komplex von Ost-Shikoku, Südwest-Japan. N Jb Geol Paläont Abh 198:275–296 Suzuki H, Gawlick H-J (2003a) Die jurassischen Radiolarienzonen der Nördlichen Kalkalpen. Gmundner Geostud 2:115–122 Suzuki H, Gawlick H-J (2003b) Biostratigraphie und Taxonomie der Radiolarien aus den Kieselsedimenten der Blaa Alm und nördlich des Loser (Nördliche Kalkalpen, Callovium-Oxfordium). Mitt Ges Geol Bergbaustud Österr 46:137–228 Suzuki H, Wegerer E, Gawlick H-J (2004) Radiolarians from the lower Oxfordian of Fludergraben (Austria, Northern Calcareous Alps). Abstract with Programs of the 2004 Annual Meeting of the Palaeontological Society of Japan, p 126 Takemura A (1986) ClassiWcation of Jurassic nassellarians (Radiolaria). Palaeontographica Abt A 195:29–74 Tan SH (1927) Over de samenstelling en het onstaan van krijten mergelgesteenten van de Molukken. Jb Mijnw Nederl Oost-Indie 55:5–165 Tollmann A (1960) Die Hallstätter Zone des östlichen Salzkammergutes und ihr Rahmen. Jb Geol B-A Wien 103:37–131 Vinassa de Regny PE (1899) I radiolarii delle ftaniti titoniane di Carpena (Spezia). Paleontographia Ital 4:217–238 Wakita K (1988) Early Cretaceous melange in the Hida-Kanayamaarea, central Japan. Bull Geol Surv Jpn 33:367–421 Wegerer E, Suzuki H, Gawlick H-J (2001) Zur stratigraphischen Einstufung von Kieselsedimenten im Bereich des Sandling (Nördliche Kalkalpen, Callovium-Oxfordium). Mitt Ges Geol Bergbaustud Österr 45:67–82 Weynschenk R (1950) Die Jura-Mikrofauna und –Xora des Sonnwendgebirges (Tirol). Schlern-Schriften Univ Innsbruck 83:1–32 Weynschenk R (1951) Two new foraminifera from the Dogger and Upper Triassic of the Sonnwend Mountains of Tyrol, Austria. J Palaeont 25:793–795 Widz D, de Wever P (1993) Nouveaux Nassellaires (Radiolaria) des radiolarites jurassiques de la coupe de Szeligowy Potok (Zones de klippes de Pieniny, Carpathes, Pologne). Rev Micropaleontol 36:77–91 Wu H (1993) Upper Jurassic and Lower Cretaceous radiolarians of Xialu chert, Yarlung Zangbo ophiolite belt. southern Tibet. In, Blueford JR, Murchey B (eds) Radiolaria of giant and subgiant Welds in Asia, pp 115–136 Yang Q (1993) Taxonomic studies of Upper Jurassic (Tithonian) radiolarians from the Taman Formation, east central Mexico. Palaeoworld 3:1–164 Yao A (1972) Radiolarian fauna from the Mino Belt in the northern part of Inuyama area, Central Japan, Part I: Spongosaturnalids. J Geosci Osaka City Univ 15:21–65 Yao A (1979) Radiolarian fauna from the Mino belt in the northern part of the Inuyama area, central Japan, part II: Nassellaria 1. J Geosci Osaka City Univ 22:21–72

123