(EMD Millipore) digested with the same enzymes to generate pCYC-LyE. ..... F7. 1622. 1935. 1.193. F8. 3621. 5213. 1.440. F9. 3068. 4850. 1.581. F10. 3609.
Supporting Information Appendix Materials and Methods Instrumentation and Measurements. All 1H-NMR spectra were measured at 500 MHz in dDMSO using a Varian INOVA-500 spectrometer maintained at 25ºC with tetramethylsilane (TMS) as an internal reference standard. Gel permeation chromatography (GPC) data were acquired from a Viscotek system equipped with a VE-3580 refractive index (RI) detector, a VE 1122
pump,
and
two
mixed-bed
organic
columns
(PAS-103M
and
PAS-105M).
Dimethylformamide (DMF) containing 0.01 M LiBr was used as the mobile phase with a flow rate of 0.5 mL/min at 55ºC. The GPC instrument was calibrated with narrowly-dispersed linear polystyrene standards purchased from Varian.
Zeta potential values were obtained using
dynamic light scattering (DLS) on a Zetasizer nano-ZS90 (Malvern, Inc.) in 25 mM sodium acetate at 25°C; all experiments were conducted using a 4 mW 633 nm HeNe laser as the light source at a fixed measuring angle of 90° to the incident laser beam and the correlation decay functions were analyzed by the cumulants method coupled with Mie theory. Scanning electron microscopy (SEM) images were acquired using a Hitachi SU-70 operating at an accelerating voltage of 5.0 kV.
Microplate experiments were analyzed using a Synergy 4 Multi-Mode
Microplate Reader (BioTek Instruments, Inc.). Materials. Monomers were purchased from Sigma-Aldrich (St. Louis, MO) and TCI (Portland, OR) (Table S1). Acetone (HPLC), chloroform (HPLC), n-hexadecane (99%), DMF (HPLC), and DMSO (≥99.7%) were purchased from Fisher Chemical. D-(+)-mannose (cell culture grade), 4toluenesulfonyl chloride (p-TsCl), allyl alcohol (≥99%), hexamethyldisilazane (HMDS; ≥99%), and polymyxin B sulfate (cell culture grade) were purchased from Sigma-Aldrich. Phosphate buffered saline (PBS) and trypan blue solution (0.4% w/v in PBS) were purchased from Life Technologies (Grand Island, NY).
Glutaraldehyde (25% in H2O) was purchased from
Polysciences (Warrington, PA). Polycarbonate isopore membranes (0.45 μm) and a Swinnex filter holder (25 mm) were purchased from Millipore (Billerica, MA). Polymer Synthesis.
Synthesis was conducted following previous protocols (1).
Briefly,
polymers were synthesized by single step Michael addition at either (1) 95°C solvent free or (2) 60°C in 2 mL DMSO.
High-temperature synthesis was performed for one day and low-
temperature synthesis was performed for five days in a glass vial under magnetic stirring. Unreacted monomers were removed by dialysis against acetone using molecular porous membrane tubing (Spectra/Por Dialysis Membrane, Spectrum Laboratories Inc.) with an approximate molecular weight filter of 3,500 daltons.
Amine/diacrylate stoichiometric ratios
were maintained at 1.2:1 for base polymer syntheses; the diacrylate monomer amount was held constant at 400 mg per reaction. Polymer characterization data (1H-NMR spectra and tabulated GPC results) are presented in a dedicated Polymer Characterization Data section at the end of the Supporting Information file. Mannosylated-D9 was synthesized using a three-step procedure (Fig. S10).
First,
acrylate-terminated poly(neopentyl glycol diacrylate-co-2-amino-1,3-propanediol), D9-ac, was synthesized without solvent at a 1:1.2 amine/diacrylate molar ratio (using 400 mg amine) at 90°C for 24 h. As a second step, ethylenediamine was reacted in excess with D9-ac to aminecap the terminal ends. Specifically, D9-ac was dissolved in DMSO at 167 mg/mL and 500 μL reacted with 500 μL of 0.5 M ethylenediamine (in DMSO) at 22°C for 24 h. Amine-capped D9 (D9-am) was then reacted with allyl-α-D-mannopyranoside (ADM) at a 1:2 molar ratio in DMSO at 22°C for 24 h. All polymers were purified by dialysis. ADM was synthesized by dissolving 3 g of D-mannose and 18 mg p-TsCl in allyl alcohol (20 mL) at 90°C under reflux for 24 h. Cell lines, Strains, and Plasmids. A murine RAW264.7 macrophage cell line kindly provided by Dr. Terry Connell (Department of Microbiology and Immunology, University at Buffalo,
SUNY) was used for gene delivery assays. The cell line was maintained in medium prepared as follows: 50 ml of fetal bovine serum (heat inactivated), 5 mL of 100 mM MEM sodium pyruvate, 5 mL of 1 M HEPES buffer, 5 mL of penicillin/streptomycin solution, and 1.25 g of D(+)-glucose were added to 500 mL phenol red-containing RPMI-1640 and filter sterilized. Cells were housed in T75 flasks and cultured at 37°C/5% CO2. The BL21(DE3) E. coli cell line (Novagen) was used as the parent strain for generation of all gene delivery bacterial vectors. Genetic manipulations were described previously (2, 3). Resulting background strains are listed in Table S2 (with hly being the gene designation of listeriolysin O [LLO]).
The lethal lysis gene E (LyE) from bacteriophage ΦX174 was PCR-
amplified from genomic DNA provided by Dr. Ryland Young (Department of Biochemistry & Biophysics, Texas A&M University) using forward primer AGG GAA TTCG ATG GTA CGC TGG ACT TTG TGG and reverse primer of AGG AAG CTT TCA CTC CTT CCG CAC GTA ATT. The gel-purified ~280 bp band was digested with EcoRI and HindIII and ligated into pACYCDuet-1 (EMD Millipore) digested with the same enzymes to generate pCYC-LyE.
The pCYC-LyE
construct was screened and confirmed by colony PCR and restriction digest analysis. A luciferase reporter plasmid driven by a cytomegalovirus (CMV) promoter (pCMV-Luc; Elim Biopharmaceuticals) was utilized during microplate reader-based transfection experiments. Plasmid pRSET-EmGFP was kindly provided by Dr. Sheldon Park (Department of Chemical and Biological Engineering, University at Buffalo, SUNY) and used during uptake studies.
An
enhanced green fluorescent protein (EGFP) gene driven by a CMV promoter within pCMVEGFP (Addgene) was used during flow cytometry transfection experiments. The ovalbumin (OVA) gene driven by a CMV promoter within pCI-neo-cOVA (Addgene) was used during mouse immunization experiments. The pCMV-Luc, pCMV-EGFP, and pCI-neo-cOVA plasmids were separately transformed into and prepared from GeneHogs (Life Technologies) competent
cells prior to use in the experiments outlined below.
Plasmid preparation for transfection
controls was performed using the PureYieldTM Plasmid Midiprep System (Promega). Preparation of Hybrid Vector Variants. Two hybrid variants were prepared from bacteria designated for hybrid vector formation. However, rather than using polymer directly, PBAE polyplexes (formulated to delivery 600 ng pDNA) were prepared as described above and used in hybrid device formation (Fig. S7Ai). Similarly, a different hybrid variant was prepared by simultaneously diluting bacteria (in PBS) and polymer (in PBS) separately in RPMI-1640 to the desired MOI (Fig. S7Aii). Transfection Studies. For gene delivery experiments, RAW264.7 cells were seeded into two different types of 96-well plates at 3 x 104 cells/well in 100 µL antibiotic-free media and incubated for 24 h to allow attachment. A tissue culture-treated, flat-bottom, sterile, white, polystyrene 96-well plate was used for luciferase assays; whereas, a tissue culture-treated, sterile, polystyrene 96-well plate was used for bicinchoninic acid (BCA) assessment (and also 3(4, 5-dimethylthiazol-2-yl)-diphenyltetrazolium bromide (MTT), EGFP flow cytometry, nitric oxide (NO) production, and bacterial uptake/load assays). Hybrid, hybrid variant, and bacterial devices were diluted in antibiotic-free RPMI-1640 to desired MOIs. Following cellular attachment, macrophage medium was replaced with 50 µL of each respective vector and allowed to incubate for an hour.
After incubation, 50 µL of
gentamicin containing RPMI-1640 was added to each well to eliminate external/nonphagocytized vectors. Following an additional 24 h incubation (48 h after initial seeding), plates were analyzed for luciferase expression using the Bright Glo assay (Promega) and protein content using the Micro BCA Protein Assay Kit (Pierce) according to each manufacturer’s instructions.
Gene delivery was calculated by normalizing luciferase expression by protein
content for each well/plate. Flow cytometry experiments for pCMV-EGFP transfection were
completed using a FACS Calibur flow cytometer (Becton Dickinson, Franklin Lakes, NJ). Two days after transfection, cells were washed with ice-cold PBS and detached from the well surface using cell scrapers prior to analysis. For proper gating, cells transfected with BL21(DE3) were used as a negative control; whereas, cells separately transfected with each control (Table 1) complexed to pCMV-EGFP were used as positive controls.
Results derive from twelve
replicates and four independent experiments. PBAE polyplexes (formulated to deliver 600 ng pCMV-Luc/well or pCMV-EGFP) were added in antibiotic-free RPMI-1640 to the seeded RAW264.7 macrophage cells, and plates were mechanically agitated and incubated for four hours. Polyplex-containing media was then removed using a 12-channel aspirating wand and replaced with 100 µL fresh, antibiotic-free RPMI-1640 medium preheated to 36°C. Cells were allowed to incubate for an additional 24 h prior to gene delivery assessment. Similarly, FuGENE 6 (Promega, Madison, WI), FuGENE HD (Promega), ViaFECT (Promega), OmniFect (TransOMIC Technologies, Huntsville, AL), Xfect (Clontech Laboratories, Inc., Mountain View, CA), JET-PEI (Polyplus-transfection SA, Illkirch, France), and GeneJuice (EMD Millipore) were included as positive controls, complexed to pDNA (Table 1), and analyzed according to each manufacturer’s instructions. MTT Assay and NO Production. Cytotoxicity resulting from hybrid vectors was determined by the MTT colorimetric assay. RAW264.7 cells were seeded and transfected as described above. Following a 24 h incubation after vector addition, cells were assayed with MTT solution (5 mg/mL), added at 10% v/v, for 3 h at 37°C/5% CO 2. Medium plus MTT solution was then aspirated and replaced by DMSO to dissolve the formazan reaction products.
Following
agitated incubation for 1 h, the formazan solution was analyzed using a microplate reader at 570 nm with 630 nm serving as the reference wavelength.
Results are presented as a
percentage of untreated cells (100% viability). NO production was measured using a Griess reagent kit (Promega, Madison, WI) according to the manufacturer’s instructions.
Characterization of Hybrid Devices. Zeta potential of bacterial, polymer, and hybrid vectors was measured by DLS. To measure surface hydrophobicity of bacteria before and after PBAE additions, samples were analyzed using a modified microbial adhesion to hydrocarbon (MATH) assay (4, 5). Briefly, bacterial and hybrid vectors were prepared and resuspended in PBS to a final 1.0 OD600. One milliliter of bacterial or hybrid vector was added to a clean glass tube in addition to 110 µL of n-hexadecane (10% v/v). Each sample was then vortexed for one minute at setting 10 (Analog Vortex Mixer, Fisher Scientific) and allowed 15 min for phase separation. Using a clean Pasteur pipet, bacterial/hybrid vector solution was retrieved, taking care to avoid the hydrocarbon layer, and transferred to a cuvette for a final OD600 measurement.
The
percentage change of hydrophobicity is calculated by:
Preparation of Vectors for SEM. Bacterial and hybrid device samples were deposited onto a 0.45-µm-pore-size membrane filter, fixed for 1 h with 2% glutaraldehyde, washed four times, and dehydrated with a graded ethanol series. Following dehydration, 100% HMDS was added, and the sample was allowed to dry uncapped. For washing and dilution of glutaraldehyde, 0.15 M sodium phosphate buffer (pH 7.2) was used. Carbon was sputtered on the samples to avoid charging in the microscope. Hybrid Uptake/Load Studies. Uptake and load studies of bacterial and hybrid vectors were evaluated using a high-throughput colorimetric assay.
Bacterial and hybrid devices were
prepared using the YWT7-hly/pRSET-EmGFP strain. Macrophage seeding and transfection procedures were conducted as described above except that instead of adding gentamycincontaining media, the transfection solution was aspirated and replaced by 50 µL of assay buffer (25 µg/mL of trypan blue and 10 µg/mL of polymyxin B). Following a 5 minute incubation
period, the assay buffer was aspirated and replaced with PBS. Cells were then analyzed using a plate reader at 487 nm excitation and 509 nm emission compared to a standard curve. Growth Inhibition. Growth studies were conducted by starting 1% (v/v) liquid cultures from overnight starter cultures and incubating with appropriate selection at 37°C/250 rpm in 50 mL LB to 0.4 OD600 followed by IPTG induction at various concentrations. Every half hour, samples were measured at OD600. Bacterial Membrane Shear Studies. Induced bacterial culture and hybrid vector samples (200 µL) were washed and resuspended in PBS, before being sonicated at 20% capacity for 5 seconds using a Branson 450D Sonifier (400 Watts, tapered microtip). Sonicated samples were then plated on LB agar plates and allowed to incubate for 24 h before counting colony forming units. Mouse Model Immunization Studies. Female BALB/c mice aged 8 weeks were obtained from The Jackson Laboratory (Bar Harbor, ME) and housed and utilized in accordance with institutional guidelines. Chicken ovalbumin and complete and incomplete Freund’s adjuvant (CFA & IFA) were purchased from Sigma. For immunizations, hybrid vectors were prepared as described above and diluted in PBS to 1ˣ105 and 1ˣ107 vectors per 200 µL (total volume). Antigens were emulsified with the adjuvants to yield 1 mg/mL (OVA protein) and 100 µg/mL (OVA pDNA) concentrations. Mice were immunized at days 0 and 14 in sets of six per sample. Hybrid vectors were injected (200 µL) subcutaneously (S.Q.) and intraperitoneally (I.P.), while controls (plasmid and protein) were only injected subcutaneously.
Initial immunization of
controls included CFA, which was replaced with IFA during booster immunizations. At days 14 and 21, retro-orbital blood samples were collected and clarified by centrifugation to collect serum. Serum anti-OVA antibody titers were quantified using the Cayman Anti-Ovalbumin IgG1 (mouse) EIA Kit (Caymen Chemical, Ann Arbor, MI) according to the manufacturer’s
instructions. For normalization comparisons, the estimation for pDNA delivered by the hybrid vector was derived from the calculation presented in the footnotes of Table 1 adjusted for pCIneo-cOVA. Statistical Evaluation. Unless otherwise indicated, data presented were generated from three independent experiments.
Error bars represent standard deviation values.
All statistical
significance comparisons between groups were performed using a one-way ANOVA with Dunnett (to compare within groups) or Bonferroni (to compare across groups) post-tests. Results and Discussion High-throughput Gene Delivery Screen across E. coli Strains. Following the identification of an optimal PBAE, D9, bacterial strain dependencies were investigated through an expanded study that included five E. coli strains expressing different levels of LLO (Table S2). Gene delivery was correlated with MOI, polymer dosage, and LLO expression (Fig. S5). At 1:1 MOI, gene delivery was positively correlated with D9 dosage regardless of LLO expression. At higher MOIs, hybrid vectors demonstrated the previously observed negatively-correlated gene delivery trend with respect to increasing D9 dosages with exception to strain 5. Strain 1 resulted in the most efficacious hybrid vector; however, strain 5, which does not express LLO, demonstrated the largest improvements in gene delivery regardless of MOI or polymer dosage.
Surface
addition of D9 to strain 5 presumably compensates for the lack of LLO during vector-mediated phagosomal release.
This hypothesis is supported by the lack of significant improvement
across MOI and D9 dosages for strain 3. In this case, relatively high levels of LLO within strain 3 likely preclude synergy with D9 addition and suggest that an optimum exists between the levels of LLO and proton sponge-mediating reagents provided by the hybrid vector. Additional Hybrid Vector Characterization. For eventual translation, the hybrid device must possess a safe cytotoxicity profile. Thus, S1:D9 hybrids were preliminarily examined for their
cytotoxicity at four D9 dosages (0.1, 0.25, 0.5, and 1.0 mg/mL) and three MOIs (1:1, 10:1, 100:1) (Fig. S6A). The viability after treatment at 1:1 MOI resulted in no obvious cytotoxicity at all dosages. Conversely, hybrid devices demonstrated moderate and significant cytotoxicity at 10:1 and 100:1 MOIs, respectively. Resulting cytotoxicity is bacterial-derived as D9 alone did not exhibit toxicity at any dosage (Fig. S6C). Interestingly, cytotoxicity decreased as D9 dosage increased suggesting that CP addition may attenuate bacterial vectors.
Similarly, a Griess
reagent assay was used to assess macrophage activation via lipopolysaccharide (LPS)mediated nitric oxide (NO) production (Fig. S6B). NO production levels decreased in a dosageresponsive manner suggesting that D9 shields the LPS moieties of the bacterial surface or inhibits intracellular NO formation. Use of D9 alone did not stimulate NO production (Fig. S6D). A recent study demonstrated that cationic polymers can inhibit the activation of nucleic acidsensing toll-like receptors leading to decreased tumor necrosis factor alpha (TNF-α) production (6). Since LPS treatment of RAW264.7 is linked to concomitant induction of TNF-α and NO production CPs presumably inhibit activation of LPS-mediated toll-like receptor 4 (TLR4). Other studies corroborate the hypothesis by demonstrating that CPs strongly inhibit LPS-induced TNF-α production through TLR4 binding (7). Further insight into APC gene delivery, NO production, and cytotoxicity can be gained from analyzing the hybrid vector design and basic biophysical properties. The influence of each individual component comprising the hybrid device was investigated by the preparation of three types of hybrid vector variants for gene delivery (Fig. S7). First, S1 was mixed with D9 in RPMI without a dedicated complexation step, resulting in a sample termed S1 + D9. Alternatively, pDNA-loaded (600 ng/well) polyplexes were prepared and complexed to the surface of YWT7hly (YWT7-hly:D9 polyplex) and S1 (S1:D9 polyplex). S1 + D9 was designed to investigate codelivery of two independent vectors. Conversely, YWT7-hly:D9 polyplex was used to test the ability of LLO-producing bacteria to mediate nanoparticle delivery. S1:D9 polyplex was used to
investigate the duality of pDNA-loaded bacterial and CP vectors. Hybrid vector variants were delivered at a 10:1 MOI with D9 dosage increased from 0.1 to 1.0 mg/mL. The S1:D9 hybrid vector performed optimally with 0.4 mg/mL D9 and was markedly improved when compared to S1 + D9 at this dosage level, demonstrating the need for a dedicated surface complexation step (Fig. S7B).
In turn, S1:D9 polyplex demonstrated a positive correlation between polymer
dosage and gene delivery, with optimal gene delivery occurring at 0.8 mg/mL D9. Interestingly, only 0.018 mg of D9 is required to fully complex 600 ng of pCMV-Luc (30:1 polymer to pDNA w/w ratio (1, 8)), but increased D9 dosages mediate elevated gene delivery levels. The data contribute to results from other polyplex studies (9-12) that also demonstrate increased gene delivery with excess polymer addition. The initial hybrid vector design utilized the bacterial strain as a means to maintain and transfer pDNA; however, YWT7-hly:D9 polyplex relies solely upon the polyplex component for plasmid maintenance.
In this case, the bacterial strain
mediates bulk polyplexes transmission and provides a phagosomal escape mechanism via LLO expression. Resulting gene delivery again demonstrated dosage dependence upon D9 addition (Fig. S7Bii), and improvements relative to the D9 polyplex alone further support the combined benefits of the hybrid vector. In the aforementioned gene delivery studies, lower MOIs resulted in positively-correlated D9 dosage-dependent increases in gene delivery. However the reason for this was unknown. Thus, a high-throughput assay was developed to investigate the influence of D9 surface addition upon cellular uptake (Fig. S8A). At the 1:1 MOI, the hybrid vector results in ~50% uptake of the total seeded vectors compared to ~30% for the bacterial control. The increase in uptake helps explain the positive correlation between gene delivery and D9 addition at the lowest MOI. In contrast, at higher MOIs, vectors saturate the APCs (~40% and ~30% uptake for 10:1 and 100:1 MOIs, respectively) and thus additional uptake mechanisms become insignificant.
The coating of CPs to the bacterial surface was initiated to increase the surface charge of final hybrid devices (Fig. S8B) with the intent of aiding the electrostatic attraction to mammalian cells and facilitating subsequent uptake (11, 12).
It was also anticipated that
surface coating may beneficially attenuate the bacterial core of the hybrid device. Thus, to test this possibility and expand upon the reduced cytotoxicity afforded by D9 surface additions (Fig. S6A), hybrid vectors were tested in shear disruption studies conducted through brief exposure to sonication (Fig. S8C). Without sonication, hybrid vectors demonstrated reduced viability (compared to the bacterial control) but did not exhibit significant differences between D9 dosages.
However, upon sonication, hybrid device viability was reduced in a D9 dosage-
dependent manner.
Antibiotics like polymyxin B (PLB) promote bacterial membrane
destabilization as a result of strong cationic headgroups. Analogously, the most cationic PBAEs from the 91-polymer library, even when applied at dosage values below 0.1 mg/mL, resulted in significant viability reduction in the context of the hybrid vector sonication shear assay. In some cases, membrane destabilization mediated by highly charged PBAEs may have resulted in hybrid devices too fragile to demonstrate efficacious gene delivery. However, in other cases, the CPs likely contributed to greatly improved APC gene delivery and viability. Likewise, the surface modification of bacterial vectors with CPs possessing significant stretches of hydrophobic domains was expected to affect final hybrid vector polarity, noting that similar vector modifications have been associated with increases in gene delivery (11-14). Using a modified microbial adhesion to hydrocarbon (MATH) assay (4, 5), hybrid vectors prepared using D9 demonstrated increased hydrophobicity regardless of polymer dosage, representing a 2-fold increase over the bacterial control (Fig. S8D).
References 1. Green JJ, Zugates GT, Langer R, & Anderson DG (2009) Poly(beta-amino esters): procedures for synthesis and gene delivery. Methods in Molecular Biology 480:53-63. 2. Parsa S, Wang Y, Rines K, & Pfeifer BA (2008) A high-throughput comparison of recombinant gene expression parameters for E. coli-mediated gene transfer to P388D1 macrophage cells. J. Biotechnol. 137(1-4):59-64. 3. Higgins DE, Shastri N, & Portnoy DA (1999) Delivery of protein to the cytosol of macrophages using Escherichia coli K-12. Mol Microbiol 31:1631-1641. 4. Rosenberg M (2006) Microbial adhesion to hydrocarbons: twenty-five years of doing MATH. FEMS Microbiology Letters 262(2):129-134. 5. Geertsemadoornbusch GI, Vandermei HC, & Busscher HJ (1993) Microbial cell-surface hydrophobicity - the Involvement of electrostatic interactions in microbial adhesion to hydrocarbons (Math). Journal of Microbiological Methods 18(1):61-68. 6. Lee J, et al. (2011) Nucleic acid-binding polymers as anti-inflammatory agents. Proc Natl Acad Sci 108(34):14055-14060. 7. Chen H, et al. (2010) The promotion of type 1 T helper cell responses to cationic polymers in vivo via toll-like receptor-4 mediated IL-12 secretion. Biomaterials 31(32):8172-8180. 8. Anderson DG, Akinc A, Hossain N, & Langer R (2005) Structure/property studies of polymeric gene delivery using a library of poly(beta-amino esters). Mol Ther 11(3):426-434. 9. Jones CH, et al. (2013) Synthesis of cationic polylactides with tunable charge densities as nanocarriers for effective gene delivery. Mol Pharm 10(3):1138-1145. 10. Chen CK, et al. (2013) Poly(ethylene glycol)-block-cationic polylactide nanocomplexes of differing charge density for gene delivery. Biomaterials 34(37):9688-9699. 11. Pack DW, Hoffman AS, Pun S, & Stayton PS (2005) Design and development of polymers for gene delivery. Nat Rev Drug Discov 4(7):581-593. 12. Jones CH, Chen CK, Ravikrishnan A, Rane S, & Pfeifer BA (2013) Overcoming nonviral gene delivery barriers: perspective and future. Mol Pharm 10(3):1138-1145. 13. Sunshine JC, Akanda MI, Li D, Kozielski KL, & Green JJ (2011) Effects of base polymer hydrophobicity and end-group modification on polymeric gene delivery. Biomacromolecules 12(10):3592-3600. 14. Liu MA (2010) DNA vaccines: an historical perspective and view to the future. Immunol. Rev. 239:62-84. 15. Studier FW & Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189(1):113-130.
Table S1. Diacrylate and amine monomer information Compound
MW (g/mol)
Defining Physical Characteristic
CAS #
Designation
Diacrylates 1,4-Butanediol diacrylate
198.2
Terminal acrylates on linear hydrocarbon
1070-70-8
A
1,5-Pentanediol diacrylate
212.2
Terminal acrylates on linear hydrocarbon
36840-85-4
B
1,6-Hexanediol diacrylate
226.3
1,6-Hexanediol
13048-33-4
C
Neopentyl glycol diacrylate
212.2
Acrylic acid
2223-82-7
D
Tetra(ethylene glycol) diacrylate
302.3
19 carbon chain ether-ester
17831-71-9
E
388.5
Two ether chains across to each other
302911-84-8
F
424.5
Two phenyl groups
4687-94-9
G
60.1
Two amines on short carbon chain
107-15-3
1
4-Amino-1-butanol
89.1
Terminal amine and alcohol groups
13325-10-5
2
5-Amino-1-pentanol
103.2
Terminal amine and alcohol groups
2508-29-4
3
1,5-Diamino-2-methylpentane
116.2
Two amine groups off carbon chain
15520-10-2
4
1-(3-Aminopropyl)pyrrolidine
128.2
23159-07-1
5
4-Aminophenyl disulfide
248.4
722-27-0
6
Cystamine
152.3
Nitrogen-containing five membered ring Two benzene rings, disulfide, two amines Disulfide
51-85-4
7
3,4-Dimethoxyphenethylamine
181.3
Benzene ring, two ether linkages
120-20-7
8
2-Amino-1,3-propanediol
91.1
Branched alkyl with two –OH groups
534-03-2
9
N,N-Diethylethylenediamine N,N-Bis(2-hydroxyethyl) ethylenediamine 1,4-Bis(3-aminopropyl)piperazine
116.2
Branched alkyl-containing nitrogen
100-36-7
10
148.2
Two –OH groups
4439-20-7
11
200.3
Internal di-amino ring
7209-38-3
12
4,4'-Trimethylenedipiperidine
210.4
Dipiperidine
16898-52-5
13
Trimethylolpropane ethoxylate (1 EO/OH) methyl ether diacrylate Bisphenol A glycerolate (1 glycerol/phenol) diacrylate Amines Ethylenediamine
Table S2. E. coli vectors
Strain #
LLO Expression 1 Ranking
Reference
N/A
N/A
(15)
BL21(DE3) carrying a reporter plasmid with a luciferase gene driven by the CMV promoter
5
N/A
(2)
YWT7-hly/pCMV-Luc
Strain contains an IPTG-inducible T7-hly cassette in the BL21(DE3) chromosome
1
2
(2)
YWTet-hly/pCMV-Luc
Strain contains a constitutive Tet-hly cassette in the BL21(DE3) chromosome
2
4
(2)
BL21(DE3)/pCMV-Luc/pET29-hly
pET29-hly carries the hly gene under an IPTGinducible T7 promoter
3
1
(2, 3)
BL21(DE3)/pCMV-Luc/pDP2615
pDP3615 carries the hly gene under a constitutive Tet promoter
4
3
(2, 3)
BL21(DE3)/pCYC-LyE
pCYC-LyE carries the LyE gene from bacteriophage ΦX174 on an IPTG-inducible pACYCDuet plasmid
N/A
N/A
This work
YWT7-hly/pCYC-LyE
N/A
2
This work
YWT7-hly/pCMV-Luc/pCYC-LyE
N/A
2
This work
Strain
Description
BL21(DE3)
E. coli B F dcm ompT hsdS(rB mB ) gal λ(DE3)
BL21(DE3)/pCMV-Luc
-
_
_
YWT7-hly/pRSET-EmGFP
pRSET-EmGFP features IPTG-inducible emerald green fluorescent protein (EmGFP) expression
N/A
2
This work
YWT7-hly/pCMV-EGFP
pCMV-EGFP carries the enhanced green fluorescent protein (EGFP) gene driven by the CMV promoter
N/A
2
This work
YWT7-hly/pCI-neo-cOVA
pCI-neo-cOVA carries the ovalbumin gene driven by the CMV promoter
N/A
2
This work
Fig. S1. Schematic showing general poly(beta-amino ester) (PBAE) polymerization and hybrid device formation. (A) Diacrylates are added to primary amines by conjugate Michael addition (i) to form base polymers from the diacrylate (A-G) and primary amine (1-13) monomers indicated (ii). (B) Representative high-throughput screen procedure. (C) Hybrid bio-synthetic vector generation (i) and gene delivery schematic (ii).
Fig. S2. Initial hybrid gene delivery screen.
A library of 91 poly(beta-amino esters) were
screened after surface addition to YWT7-hly/pCMV-Luc at three polymer dosages and 10:1 MOI. Gene delivery is measured in luminescence units divided by total protein and normalized by untreated bacterial-mediated transfection results.
A value of 100% represents a hybrid
vector mediating gene delivery at the same level as untreated YWT7-hly/pCMV-Luc.
Fig. S3. Zeta potential measurements for initial hybrid vectors. Hybrid vector surface potential is evaluated with respect to polymer alone and untreated YWT7-hly/pCMV-Luc.
Fig. S4. Second hybrid gene delivery screen. The top 20 poly(beta-amino esters) from the initial screen were tested after surface addition to YWT7-hly/pCMV-Luc at an expanded polymer dosage and MOI range. Results were measured against untreated YWT7-hly/pCMV-Luc strains and two synthetic controls, FuGENE 6 and respective polymer polyplexes. Gene delivery is measured in luminescence units normalized by total protein. The vertical lines provided for each MOI indicate the consistent gene delivery of the YWT7-hly/pCMV-Luc:D9 hybrid vectors as a basis for selection throughout the remaining studies.
Fig. S5. RAW264.7 macrophage cells transfected with hybrid E. coli:D9 vectors at varying polymer dosages, and LLO production levels, and MOIs.
*Statistical significance (95%
confidence) compared to D9 polyplex and corresponding strain controls.
Fig. S6. Characterization of hybrid vectors and D9 added to RAW264.7 macrophage cells. MTT assay and nitric oxide (NO) production of RAW264.7 resulting from incubation with strain 1 (S1) and D9 hybrid vectors (A and B) or D9 alone (C and D). Untreated controls are reported as 100% viability. *Statistical significance (95% confidence) compared to S1 (panels A and B; S1 is the 0 D9 dosage level; comparisons are made between respective MOI data sets at each D9 dosage level and those of S1).
Fig. S7. Hybrid vector variant formation and gene delivery. (A) Schematic of S1:D9 polyplex and YWT7-hly:D9 polyplex hybrid formation (i) and S1 + D9 mixing (ii). (B) Gene delivery comparison between S1:D9 hybrid vectors and variants at 10:1 MOI (i) with sample comparisons expanded across panels ii, iii, iv.
*Statistical significance (95% confidence)
compared to D9 polyplex (Bii), S1 and D9 polyplex (Biii), and associated D9 dosage data sets (Biv).
Fig. S8. Characterization of hybrid S1:D9 vectors at various polymer dosages. (A) APC uptake studies using S1 and the S1:D9 hybrid vector. (B) Zeta potential measurements. (C) Hybrid membrane shear studies with (5 s) and without (0 s) sonication. (D) Microbial adhesion to hydrocarbon assay. *Statistical significance (95% confidence) compared to YWT7-hly samples (panels A, B, and D) or respective YWT7-hly datasets (panel C).
Fig. S9. Expanded lysis gene E MTT analysis. Untreated controls are reported as 100% viability. *Statistical significance (95% confidence) compared to YWT7-hly at each MOI.
Fig. S10. Mannosylated-D9 synthetic scheme. (A) Diacrylate-terminated D9 (D9-ac) is formed via Michael addition of excess diacrylates to primary amines. (B) In a second step, D9-ac is end-modified with ethylenediamine to form an amine-terminated D9 (D9-am). (C) In parallel, allyl-α-D-mannopyranoside (ADM) is synthesized by reacting D-mannose with allyl alcohol. (D) D9-am is then reacted with ADM by Michael addition, resulting in mannose-terminated D9 (D9Man).
Fig. S11. Molecular characterization of D9 and D9-Man. (A) GPC curves and (B) 500 MHz 1H NMR spectra of D9-ac and D9-Man.
Fig. S12. Gene delivery and viability assessment of hybrid vectors and engineered variants. (A) In a parallel experiment to Fig. 3, in vitro gene delivery was completed using GFP as a reporter and flow cytometry to analyze population-based transfection (bar data) with accompanying APC viability (diamonds).
(B) Total Gene Delivery Performance (Table 1) metric comparison
between hybrid vectors and engineered variants and controls. *Statistical significance (95% confidence) compared to synthetic and respective S1 controls.
Polymer Characterization Data Table S3. GPC analysis Polymer A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10
Mn (Daltons) 3097 3858 6929 4229 1793 1771 1338 5517 4102 3256 4008 1941 5184 2102 3932 5292 2143 1032 2744 997 5157 4102 2096 5663 1769 3752 1979 6784 5374 2566 1696 1465 1372 5934 3316 2059 6466 1760 3317 1851 4105 3476 2338 1635 1669 1424 2778 6970 2107 4246 2284 2542 2525 9495 7198 5465 3280 2012 2110 4695 3840 3183
Mw (Daltons) 4312 5793 9083 6794 2697 1817 1494 7123 4960 5409 6164 2489 8701 2942 5440 7139 3064 1578 2836 1094 7122 5763 3106 8951 2256 5890 2877 8413 7369 3797 2735 1489 1518 8409 4278 2624 10641 2395 5940 2576 6645 5451 3172 2296 1752 1635 4155 9103 3421 6440 3066 4045 3549 12357 11791 10359 5161 2052 2459 7349 6043 4685
PDI 1.392 1.502 1.311 1.606 1.503 1.026 1.116 1.291 1.209 1.661 1.538 1.282 1.678 1.399 1.384 1.349 1.430 1.529 1.034 1.098 1.381 1.405 1.482 1.581 1.276 1.570 1.454 1.240 1.371 1.480 1.613 1.016 1.107 1.417 1.290 1.274 1.646 1.361 1.791 1.392 1.619 1.568 1.356 1.404 1.050 1.148 1.496 1.306 1.623 1.517 1.342 1.591 1.406 1.301 1.638 1.895 1.574 1.020 1.166 1.565 1.574 1.472
Polymer E11 E12 E13 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13
Mn (Daltons) 6998 4512 2552 2581 3511 6056 4025 3281 2210 1622 3621 3068 3609 6219 3143 3420 1988 8977 5220 5482 2135 2839 2432 4343 2748 7659 2034 1848 3036
Mw (Daltons) 10916 8671 4056 3853 5223 9070 7576 6105 2365 1935 5213 4850 5461 9975 5719 5639 2414 16163 8388 6914 3826 3341 3270 6212 4004 13439 2573 2316 5301
PDI 1.560 1.922 1.589 1.493 1.487 1.498 1.882 1.860 1.070 1.193 1.440 1.581 1.513 1.604 1.820 1.649 1.214 1.800 1.607 1.261 1.792 1.177 1.344 1.430 1.457 1.754 1.265 1.255 1.746
NMR analysis
Abbreviations for multiplicities and descriptors are: br = broad signal d = doublet t = triplet q = quartet quint = quintet m = multiplet (denotes complex pattern)
A1 1.1-1.2 (2H, br, NCH2CH2NH2) 1.5-1.65 (4H, br,CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO)) 2.3-2.5 (6H, m, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO) and NCH2CH2NH2) 2.6-2.7 (6H, m, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO) and NCH2CH2NH2) 4.0- 4.1 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO))
A2 1.3-1.5 (2H, quint,NCH2CH2CH2CH2OH) 1.55-1.65 (6H, br,CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO)) and (NCH2CH2CH2CH2OH) 2.3-2.4 (6H, m, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO) and NCH2CH2CH2CH2OH) 2.6-2.7 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO) ) 3.3-3.4 (2H, br, NCH2CH2CH2CH2OH) 3.9-4.05 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO)) 4.3-4.4 (br, NCH2CH2CH2CH2OH)
A3 1.3-1.4 (4H, br, NCH2CH2CH2CH2CH2OH) 1.55-1.65 (6H, m, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO)) and (br, NCH2CH2CH2CH2CH2OH) 2.3-2.5 (6H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO) and NCH2CH2CH2CH2CH2OH) 2.6-2.8 (4H, m, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO) ) 3.3-3.4 (2H, m, NCH2CH2CH2CH2CH2OH) 3.9-4.05 (4H, b, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO)) 4.3-4.4 (br, NCH2CH2CH2CH2CH2OH)
A4 1.1-1.2 (3H, d, NCH2CH2CH2CH(CH3)CH2NH2) 1.2-1.3 (2H, m, NCH2CH2CH2CH(CH3)CH2NH2) 1.3-1.4 (4H, m, NCH2CH2CH2CH(CH3)CH2NH2) 1.5-1.6 (m, NCH2CH2CH2CH(CH3)CH2NH2) 1.6-1.7 (4H,br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO)) 2.3-2.4 (6H, m, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO) and NCH2CH2CH2CH(CH3)CH2NH2) 2.6-2.7 (6H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO) and NCH2CH2CH2CH(CH3)CH2NH2) 3.9-4.05 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO))
A5 1.4-1.55 (2H, m, NCH2CH2CH2NC4H8) 1.55-1.7 (8H, m, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO) and NCH2CH2CH2NC4H8 (at 3, 4 position)) 2.3-2.35 (6H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO) and NCH2CH2CH2NC4H8) 2.45-2.55 (6H, br, NCH2CH2CH2NC4H8 (at 2, 5 position)) 2.6-2.7 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO) ) 3.9-4.05 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO))
A6 1.5-1.65 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO)) 2.5-2.6 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO)) 3.2-3.4 (2H, br, NC6H4SSC6H4NH2) 3.65-3.8 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO)) 4.1-4.2 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO)) 6.5-6.8 (4H, m, NC6H4SSC6H4NH2) 7.0-7.6 (4H, m, NC6H4SSC6H4NH2)
A7 1.25-1.4 (2H, br, NCH2CH2SSCH2CH2NH2) 1.5-1.65 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO)) 2.3-2.5 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO)) 2.6-2.7 (4H, br, NCH2CH2SSCH2CH2NH2) 2.8-2.9 (2H, t, NCH2CH2SSCH2CH2NH2) 2.9-3.0 (2H, br, NCH2CH2SSCH2CH2NH2) 3.0-3.1 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO)) 4.1-4.2 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO))
A8 1.5-1.65 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO)) 2.3-2.45 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2) 2.5-2.6 (6H, m, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2 and NCH2CH2C6H3(OCH3)2(COO)) 2.65-2.8 (2H, t, NCH2CH2C6H3(OCH3)2) 3.65-3.8 (6H, d, NCH2CH2C6H3(OCH3)2) 3.9-4.05 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO)) 6.6-6.8 (3H, m, NCH2CH2C6H3(OCH3)2)
A9 1.5-1.65 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO)) 2.45-2.55 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO)) 2.6-2.75 (m, NCH(CH2OH)2) 2.75-2.85 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO)) 3.25-3.5 (4H, m, NCH(CH2OH) 2) 3.6-3.7 (2H, br, NCH(CH2OH) 2 ) 4.0-4.15 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO))
A10 0.9-1.0 (6H, t, NCH2CH2N(CH2CH3)2) 1.6-1.7 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO)) 2.3-2.4 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO)) 2.5-2.6 (4H, q, NCH2CH2N(CH2CH3)2) 2.6-2.8 (4H, m, NCH2CH2N(CH2CH3)2) 3.2-3.4 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO)) 3.95-4.05 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO))
A11 1.55-1.65 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO)) 2.3-2.45 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO)) 2.5-2.6 (8H, m, NCH2CH2N(CH2CH2OH)2) 2.6-2.75 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO)) 3.45-3.55 (4H, t, NCH2CH2N(CH2CH2OH)2) 3.55-3.65 (2H, br, NCH2CH2N(CH2CH2OH)2) 3.95-4.05 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO))
A12 1.4-1.5 (2H, m, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 1.5-1.65 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO)) 1.65-1.8 (2H, m, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 2.0-2.2 (2H, quint, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 2.3-2.4 (4H, m, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO)) 2.5-2.6 (8H, br, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 2.6-2.7 (6H, t, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 2.7-2.8 (2H, t, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 3.0-3.1 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO))
3.95-4.05 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2(COO))
A13 1.0-1.1 (4H, m, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2CH2CH2(COO)) 1.1-1.2 (2H, m, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2CH2CH2(COO) at 4 position) 1.2-1.3(2H, br, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2CH2CH2(COO)) 1.5-1.7 (12H, m, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2CH2CH2(COO) at 3, 5 position) 2.3-2.45 (4H, m, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2CH2CH2(COO)) 2.5-2.6 (8H, t, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2CH2CH2(COO) at 2, 6 position) 3.0-3.1 (4H, t, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2CH2CH2(COO)) 3.9-4.05 (4H, br, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2CH2CH2(COO))
B1 1.25-1.4 (2H, br, NCH2CH2NH2) 1.4-1.5 (2H, quint, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 1.5-1.65 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 2.35-2.6 (6H, m, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO) and NCH2CH2NH2) 2.6-2.75 (6H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO) and NCH2CH2NH2) 3.9-4.05 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO))
B2 1.3-1.4 (6H, quint, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO) and NCH2CH2CH2CH2OH) 1.5-1.65 (4H, quint, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 2.3-2.4 (6H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO) and NCH2CH2CH2CH2OH) 2.5-2.6 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 3.3-3.4 (2H, t, NCH2CH2CH2CH2OH) 3.9-4.05 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 4.3-4.4 (br, NCH2CH2CH2CH2OH)
B3 1.15-1.25(2H, quint, NCH2CH2CH2CH2CH2OH) 1.3-1.4 (6H, quint, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO) and NCH2CH2CH2CH2CH2OH) 1.5-1.65 (4H, quint, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 2.3-2.4 (6H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO) and NCH2CH2CH2CH2CH2OH) 2.6-2.7 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 3.3-3.4 (2H, t, NCH2CH2CH2CH2CH2OH) 3.9-4.05 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 4.25-4.35(br, NCH2CH2CH2CH2CH2OH)
B4 1.0-1.1 (3H, br, NCH2CH2CH2CH(CH3)CH2NH2) 1.3-1.4 (6H, m, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO) and NCH2CH2CH2CH(CH3)CH2NH2) 1.4-1.5 (3H, m, NCH2CH2CH2CH(CH3)CH2NH2) 1.5-1.65 (4H, quint, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 2.3-2.4 (6H, m, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO) and NCH2CH2CH2CH(CH3)CH2NH2) 2.6-2.75 (6H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO) and NCH2CH2CH2CH(CH3)CH2NH2) 3.9-4.05 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO))
B5 1.3-1.4 (2H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 1.4-1.5 (2H, br, NCH2CH2CH2NC4H8) 1.5-1.65 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 1.65-1.75 (4H, br, NCH2CH2CH2NC4H8 (at 3, 4 position)) 2.3-2.4 (6H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO) and NCH2CH2CH2NC4H8) 2.4-2.6 (6H, br, NCH2CH2CH2NC4H8 (at 2, 5 position)) 2.6-2.7 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 3.9-4.05 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO))
B6 1.3-1.45 (2H, quint, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 1.5-1.65 (4H, quint, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 2.45-2.65 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 3.2-3.4 (2H, br, NC6H4SSC6H4NH2) 3.65-3.8 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 4.1-4.2 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 6.5-6.6 (4H, m, NC6H4SSC6H4NH2) 7.0-7.1 (4H, m, NC6H4SSC6H4NH2)
B7 1.3-1.45 (2H, quint, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 1.5-1.65 (6H, m, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO) and NCH2CH2SSCH2CH2NH2) 2.45-2.55 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 2.55-2.65 (4H, br, NCH2CH2SSCH2CH2NH2) 2.6-2.7 (2H, t, NCH2CH2SSCH2CH2NH2 ) 2.8-2.9 (2H, t, NCH2CH2SSCH2CH2NH2) 3.0-3.1 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 4.0-4.15 (4H, m, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO))
B8 1.3-1.4 (2H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 1.5-1.65 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 2.3-2.45 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 2.5-2.65 (6H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO) and NCH2CH2C6H3(OCH3)2) 2.65-2.8 (2H, t, NCH2CH2C6H3(OCH3)2) 3.65-3.8 (6H, d, NCH2CH2C6H3(OCH3)2) 3.9-4.05 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 6.6-6.8 (3H, m, NCH2CH2C6H3(OCH3)2)
B9 1.3-1.45 (2H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 1.5-1.65 (4H, quint, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 2.45-2.6 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 2.6-2.75 (m, NCH(CH2OH)2) 2.75-2.85 (4H, m, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 3.25-3.55 (4H, m, NCH(CH2OH) 2) 3.6-3.7 (2H, br, NCH(CH2OH) 2) 3.9-4.05 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO))
B10 0.9-1.0 (6H, br, NCH2CH2N(CH2CH3)2) 1.3-1.45 (2H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 1.5-1.65 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 2.3-2.45 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 2.5-2.6 (4H, q, NCH2CH2N(CH2CH3)2) 2.6-2.8 (4H, m, NCH2CH2N(CH2CH3)2) 3.2-3.4 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO) ) 3.9-4.05 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO))
B11 1.3-1.45 (2H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 1.5-1.65 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 2.3-2.45 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 2.5-2.6 (8H, t, NCH2CH2N(CH2CH2OH)2) 2.6-2.75 (4H, m, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 3.45-3.55 (4H, br, NCH2CH2N(CH2CH2OH)2) 3.55-3.6 (2H, br, NCH2CH2N(CH2CH2OH)2) 3.9-4.05 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO))
B12 1.3-1.4 (2H, m, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 1.4-1.5 (2H, m, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 1.5-1.65 (4H, quint, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 1.65-1.8 (2H, m, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 2.0-2.2 (2H, quint, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 2.3-2.4 (4H, m, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 2.5-2.6 (8H, br, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 2.6-2.75 (6H, m, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 2.75-2.85 (2H, br, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2)
3.0-3.1 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 3.9-4.05 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2(COO))
B13 1.0-1.1 (4H, m, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 1.1-1.2 (2H, m, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2CH2CH2CH2(COO) at 4 position) 1.2-1.3(2H, br, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 1.3-1.4 (2H, quint, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 1.5-1.65 (12H, m, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2CH2CH2CH2(COO) at 3, 5 position) 2.3-2.45 (4H, m, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 2.5-2.6 (8H, t, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2CH2CH2CH2(COO) at 2, 6 position) 2.9-3.0 (4H, t, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2CH2CH2CH2(COO)) 4.0-4.15 (4H, t, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2CH2CH2CH2(COO))
C1 1.3-1.45 (6H, m, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO) and NCH2CH2NH2) 1.5-1.65 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 2.35-2.6 (6H, m, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO) and NCH2CH2NH2) 2.6-2.75 (6H, m, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO) and NCH2CH2NH2) 3.9-4.05 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO))
C2 1.25-1.4 (8H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO) and NCH2CH2CH2CH2OH) 1.5-1.65 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 2.3-2.4 (6H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO) and NCH2CH2CH2CH2OH) 2.6-2.7 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 3.3-3.4 (2H, br, NCH2CH2CH2CH2OH) 3.95-4.05 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 4.3-4.4 (br, NCH2CH2CH2CH2OH)
C3 1.15-1.25(2H, m, NCH2CH2CH2CH2CH2OH) 1.25-1.45 (8H, m, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO) and NCH2CH2CH2CH2CH2OH) 1.5-1.65 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 2.3-2.4 (6H, m, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO) and NCH2CH2CH2CH2CH2OH) 2.6-2.7 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 3.3-3.4 (2H, br, NCH2CH2CH2CH2CH2OH) 3.9-4.05 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 4.25-4.4 (br, NCH2CH2CH2CH2CH2OH)
C4 1.0-1.1 (3H, br, NCH2CH2CH2CH(CH3)CH2NH2) 1.25-1.4 (8H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO) and NCH2CH2CH2CH(CH3)CH2NH2) 1.4-1.5 (3H, br, NCH2CH2CH2CH(CH3)CH2NH2) 1.5-1.65 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 2.3-2.4 (6H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO) and NCH2CH2CH2CH(CH3)CH2NH2) 2.6-2.75 (6H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO) and NCH2CH2CH2CH(CH3)CH2NH2) 3.9-4.05 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO))
C5 1.25-1.35(4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 1.4-1.5 (2H, t, NCH2CH2CH2NC4H8) 1.5-1.65 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 1.65-1.75 (4H, br, NCH2CH2CH2NC4H8 (at 3, 4 position)) 2.3-2.4 (6H, m, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO) and NCH2CH2CH2NC4H8) 2.45-2.55 (6H, br, NCH2CH2CH2NC4H8 (at 2, 5 position)) 2.6-2.7 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 3.9-4.05 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO))
C6 1.25-1.4 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 1.5-1.65 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 2.45-2.65 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 3.2-3.4 (2H, br, NC6H4SSC6H4NH2) 3.65-3.8 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 4.0-4.15 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 6.45-6.55 (4H, m, NC6H4SSC6H4NH2) 7.0-7.1 (4H, m, NC6H4SSC6H4NH2)
C7 1.25-1.4 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 1.5-1.65 (6H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO) and NCH2CH2SSCH2CH2NH2) 2.4-2.5 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 2.5-2.6 (4H, br, NCH2CH2SSCH2CH2NH2) 2.6-2.7 (2H, t, NCH2CH2SSCH2CH2NH2 ) 2.8-2.9 (2H, t, NCH2CH2SSCH2CH2NH2) 3.0-3.15 (4H, m, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 4.0-4.15 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO))
C8 1.25-1.35(4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 1.5-1.65 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 2.3-2.45 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 2.5-2.65 (6H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO) and NCH2CH2C6H3(OCH3)2) 2.65-2.8 (2H, t, NCH2CH2C6H3(OCH3)2) 3.65-3.8 (6H, d, NCH2CH2C6H3(OCH3)2) 3.9-4.05 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 6.65-6.85 (3H, m, NCH2CH2C6H3(OCH3)2)
C9 1.25-1.4 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 1.5-1.65 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 2.4-2.6 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 2.6-2.75 (m, NCH(CH2OH)2) 2.8-2.9 (4H, quint, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 3.25-3.55 (4H, m, NCH(CH2OH) 2) 3.6-3.7 (2H, br, NCH(CH2OH) 2) 3.9-4.05 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO))
C10 0.9-1.0 (6H, br, NCH2CH2N(CH2CH3)2) 1.25-1.4 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 1.5-1.6 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 2.3-2.45 (4H, m, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 2.45-2.55 (4H, br, NCH2CH2N(CH2CH3)2) 2.65-2.8 (4H, m, NCH2CH2N(CH2CH3)2) 3.25-3.4 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 3.95-4.05 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO))
C11 1.25-1.4 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 1.5-1.65 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 2.3-2.45 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 2.5-2.6 (8H, br, NCH2CH2N(CH2CH2OH)2) 2.65-2.75 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 3.35-3.45 (4H, br, NCH2CH2N(CH2CH2OH)2) 3.55-3.65 (2H, t, NCH2CH2N(CH2CH2OH)2) 3.95-4.05 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO))
C12 1.25-1.35 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 1.4-1.5 (2H, m, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 1.5-1.6 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 1.65-1.8 (2H, br, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 2.0-2.2 (2H, quint, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 2.3-2.4 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 2.5-2.6 (8H, br, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 2.6-2.75 (6H, m, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 2.75-2.85 (2H, br, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 3.0-3.1 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO))
3.95-4.05 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO))
C13 1.1-1.2 (4H, m, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO))) 1.2-1.3 (6H, m, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO) at 4 position) 1.3-1.4 (2H, quint, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 1.5-1.65 (12H, m, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO) at 3, 5 position) 2.35-2.45 (4H, m, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 2.45-2.6 (8H, t, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO) at 2, 6 position) 2.9-3.0 (4H, m, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO)) 4.0-4.15 (4H, t, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2CH2CH2CH2CH2(COO))
D1 0.85-0.95(6H, br, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO)) 1.4-1.5 (2H, br, NCH2CH2NH2) 2.35-2.6 (6H, m, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO) and NCH2CH2NH2) 2.6-2.7 (6H, t, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO) and NCH2CH2NH2) 3.75-3.9 (4H, br, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO))
D2 0.85-0.95(6H, br, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO)) 1.35-1.45 (4H, br, NCH2CH2CH2CH2OH) 2.35-2.45 (6H, t, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO) and NCH2CH2CH2CH2OH) 2.65-2.75 (4H, m, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO)) 3.3-3.4 (2H, br, NCH2CH2CH2CH2OH) 3.8-3.9 (4H, br, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO)) 4.3-4.4 (br, NCH2CH2CH2CH2OH)
D3 0.8-0.95 (6H, br, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO)) 1.15-1.25 (2H, m, NCH2CH2CH2CH2CH2OH) 1.3-1.45 (4H, m, NCH2CH2CH2CH2CH2OH) 2.3-2.4 (6H, m, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO) and NCH2CH2CH2CH2CH2OH) 2.6-2.7 (4H, t, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO)) 3.3-3.4 (2H, br, NCH2CH2CH2CH2CH2OH) 3.8-3.9 (4H, br, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO)) 4.25-4.4 (br, NCH2CH2CH2CH2CH2OH)
D4 0.9-1.0 (6H, br, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO)) 1.0-1.1 (3H, br, NCH2CH2CH2CH(CH3)CH2NH2) 1.3-1.4 (4H, br, NCH2CH2CH2CH(CH3)CH2NH2) 1.4-1.5 (3H, br, NCH2CH2CH2CH(CH3)CH2NH2) 2.3-2.4 (6H, br, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO) and NCH2CH2CH2CH(CH3)CH2NH2) 2.6-2.75 (6H, br, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO) and NCH2CH2CH2CH(CH3)CH2NH2) 3.8-3.9 (4H, br, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO))
D5 0.9-1.0 (6H, br, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO)) 1.4-1.55 (2H, br, NCH2CH2CH2NC4H8) 1.6-1.7 (4H, br, NCH2CH2CH2NC4H8 (at 3,4 position)) 2.3-2.4 (6H, br, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO) and NCH2CH2CH2NC4H8) 2.4-2.6 (6H, br, NCH2CH2CH2NC4H8 (at 2,5 position)) 2.6-2.7 (4H, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO)) 3.8-3.9 (4H, br, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO))
D6 0.9-1.0 (6H, br, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO)) 2.5-2.6 (4H, t, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO)) 3.3-3.4 (2H, br, NC6H4SSC6H4NH2) 3.65-3.8 (4H, br, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO)) 3.9-4.0 (4H, br, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO)) 6.45-6.55 (4H, br, NC6H4SSC6H4NH2) 7.0-7.1 (4H, br, NC6H4SSC6H4NH2)
D7 0.9-1.0 (6H, br, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO)) 1.2-1.4 (2H, br, NCH2CH2SSCH2CH2NH2) 2.4-2.5 (4H, br, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO)) 2.5-2.6 (4H, br, NCH2CH2SSCH2CH2NH2) 2.6-2.7 (2H, br, NCH2CH2SSCH2CH2NH2 ) 2.8-2.9 (2H, t, NCH2CH2SSCH2CH2NH2) 3.0-3.15 (4H, m, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO)) 3.9-4.0 (4H, br, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO))
D8 0.85-0.95 (6H, br, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO)) 2.3-2.45 (4H, br, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO)) 2.5-2.65 (6H, t, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO) and NCH2CH2C6H3(OCH3)2) 2.65-2.8 (2H, t, NCH2CH2C6H3(OCH3)2) 3.65-3.8 (6H, d, NCH2CH2C6H3(OCH3)2) 3.8-3.9 (4H, br, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO)) 6.6-6.85 (3H, m, NCH2CH2C6H3(OCH3)2)
D9 0.9-1.0 (6H, br, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO)) 2.4-2.6 (4H, t, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO)) 2.6-2.7 (t, NCH(CH2OH)2) 2.7-2.9 (4H, t, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO)) 3.25-3.5 (4H, br, NCH(CH2OH) 2) 3.6-3.7 (2H, br, NCH(CH2OH) 2) 3.8-3.9 (4H, br, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO))
D10 0.9-1.0 (12H, br, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO) and NCH2CH2N(CH2CH3)2) 2.35-2.45 (4H, t, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO)) 2.45-2.55 (4H, br, NCH2CH2N(CH2CH3)2) 2.65-2.8 (4H, m, NCH2CH2N(CH2CH3)2) 3.3-3.45 (4H, br, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO)) 3.8-3.9 (4H, br, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO))
D11 0.9-1.0 (6H, br, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO)) 2.3-2.45 (4H, t, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO)) 2.5-2.6 (8H, br, NCH2CH2N(CH2CH2OH)2) 2.65-2.75 (4H, t, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO)) 3.35-3.45 (4H, br, NCH2CH2N(CH2CH2OH)2) 3.55-3.65 (2H, t, NCH2CH2N(CH2CH2OH)2) 3.8-3.9 (4H, br, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO))
D12 0.9-1.0 (6H, br, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO)) 1.45-1.55 (2H, br, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 1.55-1.7 (2H, br, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 2.2-2.3 (2H, br, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 2.3-2.4 (4H, br, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO)) 2.55-2.65 (8H, br, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 2.65-2.75 (6H, m, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 2.75-2.85 (2H, br, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 3.1-3.2 (4H, t, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO))
3.8-3.9 (4H, t, CH2CH2NCH2CH2(COO)CH2C(CH3)2CH2(COO))
D13 0.9-1.0 (6H, br, CH2CH2 (C5H9N)CH2CH2CH2(C5H9N)CH2CH2(COO)CH2C(CH3)2CH2(COO)) 1.0-1.1 (4H, br, CH2CH2 (C5H9N)CH2CH2CH2(C5H9N)CH2CH2(COO)CH2C(CH3)2CH2(COO)) 1.1-1.2 (2H, br, CH2CH2 (C5H9N)CH2CH2CH2(C5H9N)CH2CH2(COO)CH2C(CH3)2CH2(COO) at 4 position) 1.2-1.3 (2H, br, CH2CH2 (C5H9N)CH2CH2CH2(C5H9N)CH2CH2(COO)CH2C(CH3)2CH2(COO)) 1.5-1.65 (8H, br, CH2CH2 (C5H9N)CH2CH2CH2(C5H9N)CH2CH2(COO)CH2C(CH3)2CH2(COO) at 3, 5 position) 2.3-2.45 (4H, t, CH2CH2 (C5H9N)CH2CH2CH2(C5H9N)CH2CH2(COO)CH2C(CH3)2CH2(COO)) 2.5-2.6 (8H, t, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2C(CH3)2CH2(COO) at 2, 6 position) 2.9-3.0 (4H, t, CH2CH2 (C5H9N)CH2CH2CH (C5H9N)CH2CH2(COO)CH2C(CH3)2CH2(COO)) 3.8-3.9 (4H, br, CH2CH2 (C5H9N)CH2CH2CH2(C5H9N)CH2CH2(COO)CH2C(CH3)2CH2(COO))
E1 1.1-1.2 (2H, br, NCH2CH2NH2) 2.35-2.6 (6H, m, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO) and NCH2CH2NH2) 2.6-2.75 (6H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO) and NCH2CH2NH2) 3.45-3.55 (8H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 3.55-3.65 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 4.1-4.2 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO))
E2 1.3-1.4 (4H, br, NCH2CH2CH2CH2OH) 2.3-2.4 (6H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO) and NCH2CH2CH2CH2OH) 2.5-2.6 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 3.3-3.4 (2H, br, NCH2CH2CH2CH2OH) 3.45-3.55 (8H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 3.55-3.65 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 4.1-4.2 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 4.3-4.4 (br, NCH2CH2CH2CH2OH)
E3 1.15-1.25 (2H, quint, NCH2CH2CH2CH2CH2OH) 1.25-1.35 (2H, quint, NCH2CH2CH2CH2CH2OH) 1.35-1.45 (2H, m, NCH2CH2CH2CH2CH2OH) 2.3-2.4 (6H, m, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO) and NCH2CH2CH2CH2CH2OH) 2.6-2.7 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 3.3-3.4 (2H, t, NCH2CH2CH2CH2CH2OH) 3.45-3.55 (8H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 3.55-3.65 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 4.1-4.2 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 4.2-4.4 (br, NCH2CH2CH2CH2CH2OH)
E4 1.0-1.1 (3H, br, NCH2CH2CH2CH(CH3)CH2NH2) 1.3-1.4 (4H, br, NCH2CH2CH2CH(CH3)CH2NH2) 1.4-1.5 (3H, br, NCH2CH2CH2CH(CH3)CH2NH2) 2.4-2.5 (6H, m, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO) and NCH2CH2CH2CH(CH3)CH2NH2) 2.6-2.75 (6H, m, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO) and NCH2CH2CH2CH(CH3)CH2NH2) 3.45-3.55 (8H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 3.55-3.65 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 4.1-4.2 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO))
E5 1.45-1.55 (2H, br, NCH2CH2CH2NC4H8) 1.65-1.75 (4H, br, NCH2CH2CH2NC4H8 (at 3, 4 position)) 2.35-2.45 (6H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO) and NCH2CH2CH2NC4H8) 2.45-2.6 (6H, br, NCH2CH2CH2NC4H8 (at 2, 5 position)) 2.6-2.7 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 3.45-3.55 (8H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 3.55-3.65 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 4.1-4.2 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO))
E6 2.45-2.65 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 3.3-3.4 (2H, br, NC6H4SSC6H4NH2) 3.45-3.55 (8H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 3.55-3.65 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 3.65-3.8 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 4.1-4.25(4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 6.5-6.6 (4H, br, NC6H4SSC6H4NH2) 7.0-7.1 (4H, br, NC6H4SSC6H4NH2)
E7 1.2-1.4 (2H, m, NCH2CH2SSCH2CH2NH2) 2.4-2.5 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 2.5-2.6 (4H, br, NCH2CH2SSCH2CH2NH2) 2.6-2.7 (2H, br, NCH2CH2SSCH2CH2NH2 ) 2.8-2.9 (2H, t, NCH2CH2SSCH2CH2NH2) 3.0-3.15 (4H, m, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 3.45-3.55 (8H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 3.55-3.65 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 4.1-4.2 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO))
E8 2.3-2.45 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 2.5-2.65 (6H, m, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO) and NCH2CH2C6H3(OCH3)2) 2.65-2.8 (2H, m, NCH2CH2C6H3(OCH3)2) 3.45-3.55 (8H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 3.55-3.65 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 3.65-3.75 (6H, d, NCH2CH2C6H3(OCH3)2) 4.0-4.1 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 6.65-6.85 (3H, m, NCH2CH2C6H3(OCH3)2)
E9 2.45-2.6 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 2.6-2.75 (m, NCH(CH2OH)2) 2.75-2.85 (4H, m, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 3.25-3.55 (4H, m, NCH(CH2OH) 2) 3.45-3.55 (8H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 3.55-3.7 (6H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO) and NCH(CH2OH) 2) 4.1-4.2 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO))
E10 0.9-1.0 (6H, t, NCH2CH2N(CH2CH3)2) 2.3-2.45 (4H, m, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 2.5-2.6 (4H, br, NCH2CH2N(CH2CH3)2) 2.6-2.8 (4H, m, NCH2CH2N(CH2CH3)2) 3.25-3.35 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 3.45-3.55 (8H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 3.55-3.65 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 4.1-4.2 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO))
E11 2.3-2.45 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 2.5-2.6 (8H, t, NCH2CH2N(CH2CH2OH)2) 2.65-2.75 (4H, m, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 3.35-3.45 (4H, br, NCH2CH2N(CH2CH2OH)2) 3.45-3.55 (8H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 3.55-3.65 (6H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO) and NCH2CH2N(CH2CH2OH)2) 4.1-4.2 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO))
E12 1.45-1.6 (2H, br, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 1.75-1.9 (2H, t, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 2.0-2.1 (2H, br, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 2.3-2.45 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 2.5-2.6 (8H, br, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 2.65-2.75 (6H, m, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 2.75-2.85 (2H, br, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 3.0-3.1 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 3.45-3.55 (8H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 3.55-3.65 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 4.1-4.2 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO))
E13 1.0-1.1 (4H, t, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO) CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 1.1-1.2 (2H, br, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO) at 4 position) 1.2-1.3(2H, br, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO) CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 1.45-1.55 (8H, t, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO) CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO) at 3, 5 position) 2.3-2.45 (4H, m, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO) CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 2.5-2.6 (8H, t, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO) CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO) at 2, 6 position) 3.0-3.1 (4H, t, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO) CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 3.35-3.45 (8H, br, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO) CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO)) 3.45-3.55 (4H, m, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO) CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO))
4.1-4.2 (4H, br, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO) CH2CH2OCH2CH2OCH2CH2OCH2CH2(COO))
F1 0.8-0.9 (3H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 1.25-1.45 (4H, q, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO) and NCH2CH2NH2) 2.35-2.6 (6H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO) and NCH2CH2NH2) 2.6-2.75 (6H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO) and NCH2CH2NH2) 3.2-3.25 (3H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.4-3.45 (6H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO))
3.5-3.55 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.55-3.65 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 4.1-4.2 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO))
F2 0.75-0.85 (3H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 1.25-1.45 (6H, quint, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO) and NCH2CH2CH2CH2OH) 2.3-2.4 (6H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO) and NCH2CH2CH2CH2OH) 2.65-2.75 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.2-3.25 (3H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.3-3.4 (2H, t, NCH2CH2CH2CH2OH) 3.4-3.5 (6H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO))
3.5-3.55 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.55-3.65 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 4.1-4.2 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 4.3-4.4 (br, NCH2CH2CH2CH2OH)
F3 0.8-0.9 (3H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 1.15-1.45 (8H, quint, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO) and NCH2CH2CH2CH2CH2OH) 2.3-2.4 (6H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO) and NCH2CH2CH2CH2CH2OH) 2.6-2.7 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.2-3.25 (3H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.3-3.4 (2H, t, NCH2CH2CH2CH2CH2OH) 3.4-3.45 (6H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO))
3.5-3.55 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.55-3.65 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 4.1-4.2 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 4.25-4.35 (br, NCH2CH2CH2CH2CH2OH)
F4 0.8-0.9 (3H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 1.0-1.1 (3H, br, NCH2CH2CH2CH(CH3)CH2NH2) 1.25-1.4 (6H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO) and NCH2CH2CH2CH(CH3)CH2NH2) 1.4-1.55 (3H, br, NCH2CH2CH2CH(CH3)CH2NH2) 2.3-2.45 (6H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO) and NCH2CH2CH2CH(CH3)CH2NH2) 2.6-2.75 (6H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO) and NCH2CH2CH2CH(CH3)CH2NH2) 3.2-3.25 (3H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO))
3.4-3.45 (6H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.5-3.55 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.55-3.65 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 4.1-4.2 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO))
F5 0.8-0.9 (3H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 1.25-1.45 (2H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 1.45-1.55 (2H, br, NCH2CH2CH2NC4H8) 1.6-1.7 (4H, br, NCH2CH2CH2NC4H8 (at 3, 4 position)) 2.3-2.4 (6H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO) and NCH2CH2CH2NC4H8) 2.5-2.6 (6H, t, NCH2CH2CH2NC4H8 (at 2, 5 position)) 2.6-2.7 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.2-3.25 (3H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO))
3.4-3.45 (6H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.5-3.55 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.55-3.65 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 4.1-4.2 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO))
F6 0.8-0.9 (3H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 1.25-1.45 (2H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 2.5-2.65 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.2-3.3 (5H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO) and NC6H4SSC6H4NH2) 3.4-3.45 (6H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.5-3.55 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO))
3.55-3.65 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.75-3.9 (4H, m, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 4.1-4.2 (4H, m, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 6.5-6.8 (4H, m, NC6H4SSC6H4NH2) 7.2-7.4 (4H, m, NC6H4SSC6H4NH2)
F7 0.8-0.9 (3H, m, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 1.25-1.45 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO) and NCH2CH2SSCH2CH2NH2) 2.4-2.5 (4H, m, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 2.5-2.65 (4H, br, NCH2CH2SSCH2CH2NH2) 2.65-2.8 (2H, t, NCH2CH2SSCH2CH2NH2) 2.8-3.0 (2H, m, NCH2CH2SSCH2CH2NH2) 3.1-3.2 (4H, m, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.2-3.25 (3H, m, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO))
3.4-3.45 (6H, m, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.5-3.55 (4H, m, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.55-3.65 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 4.1-4.25 (4H, m, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO))
F8 0.7-0.9 (3H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 1.2-1.4 (2H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 2.3-2.45 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 2.5-2.6 (6H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO) and NCH2CH2C6H3(OCH3)2) 2.65-2.8 (2H, t, NCH2CH2C6H3(OCH3)2) 3.2-3.3 (3H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.4-3.45 (6H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO))
3.45-3.5 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.55-3.6 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.8-3.95 (6H, d, NCH2CH2C6H3(OCH3)2) 4.0-4.1 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 6.6-6.8 (3H, m, NCH2CH2C6H3(OCH3)2)
F9 0.8-0.9 (3H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 1.25-1.45 (2H, m, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 2.45-2.6 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 2.6-2.7 (t, NCH(CH2OH)2) 2.7-2.9 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.2-3.25 (3H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.4-3.45 (6H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.5-3.55 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO))
3.55-3.65 (8H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO) and NCH(CH2OH)2) 3.65-3.7 (2H, br, NCH(CH2OH) 2) 4.1-4.25 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO))
F10 0.8-0.9 (3H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 0.9-1.0 (6H, br, NCH2CH2N(CH2CH3)2) 1.25-1.45 (2H, m, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 2.3-2.45 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 2.5-2.6 (4H, br, NCH2CH2N(CH2CH3)2) 2.6-2.8 (4H, m, NCH2CH2N(CH2CH3)2) 3.2-3.25 (3H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.25-3.4 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.4-3.45 (6H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO))
3.5-3.55 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.55-3.65 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 4.1-4.2 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO))
F11 0.8-0.9 (3H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 1.25-1.45 (2H, q, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 2.3-2.45 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 2.5-2.6 (8H, t, NCH2CH2N(CH2CH2OH)2) 2.7-2.8 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.2-3.25(3H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.4-3.45 (10H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO) and NCH2CH2N(CH2CH2OH)2)
3.5-3.55 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.55-3.65 (6H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO) and NCH2CH2N(CH2CH2OH)2) 4.1-4.2 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO))
F12 0.8-0.9 (3H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 1.25-1.45 (2H, q, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 1.45-1.6 (2H, br, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 1.75-1.9 (2H, br, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 2.0-2.1 (2H, br, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 2.3-2.45 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 2.5-2.6 (8H, br, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 2.65-2.75 (6H, t, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 2.75-2.85 (2H, br, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2)
3.0-3.1 (4H, t, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.2-3.25(3H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.4-3.45 (6H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.5-3.55 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.55-3.65 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 4.1-4.2 (4H, br, CH2CH2NCH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO))
F13
0.8-0.9 (3H, t, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 1.0-1.1 (4H, br, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 1.1-1.2 (2H, br, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO) at 4 position) 1.2-1.3(2H, br, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 1.3-1.45 (2H, br, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 1.45-1.55 (8H, br, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO) at 3, 5 position) 2.3-2.45 (4H, br, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 2.5-2.6 (8H, t, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO) at 2, 6 position)
3.0-3.1 (4H, br, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.2-3.25(3H, br, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.4-3.45 (6H, br, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.5-3.55 (4H, br, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 3.55-3.65 (4H, br, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO)) 4.1-4.2 (4H, br, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH2OCH2C(CH2CH3)(CH2OCH2CH2OCH3)CH2OCH2CH2(COO))
G1 1.5-1.6 (8H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO) and NCH2CH2NH2) 2.35-2.6 (6H, t, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO) and NCH2CH2NH2) 2.6-2.7 (6H, t, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO) and NCH2CH2NH2) 2.95-3.1 (2H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 3.9-4.05 (8H, m, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 4.05-4.15 (2H, t, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 6.8-6.9 (4H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 7.0-7.1 (4H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO))
G2 1.25-1.4 (4H, br, NCH2CH2CH2CH2OH) 1.5-1.6 (6H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 2.3-2.45 (6H, t, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO) and NCH2CH2CH2CH2OH) 2.65-2.8 (4H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 2.95-3.1 (2H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 3.3-3.4 (2H, br, NCH2CH2CH2CH2OH) 4.0-4.1 (8H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 4.1-4.15 (2H, t, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 4.3-4.4 (br, NCH2CH2CH2CH2OH) 6.8-6.9 (4H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 7.0-7.1 (4H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO))
G3 1.15-1.25 (2H, quint, NCH2CH2CH2CH2CH2OH) 1.25-1.35 (2H, quint, NCH2CH2CH2CH2CH2OH) 1.35-1.45 (2H, t, NCH2CH2CH2CH2CH2OH) 1.5-1.6 (6H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 2.3-2.4 (6H, t, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO) and NCH2CH2CH2CH2CH2OH) 2.6-2.7 (4H, t, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 2.95-3.1 (2H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 3.3-3.4 (2H, t, NCH2CH2CH2CH2CH2OH) 4.0-4.1 (8H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 4.1-4.15 (2H, t, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 4.2-4.4 (br, NCH2CH2CH2CH2CH2OH) 6.8-6.9 (4H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO))
7.0-7.1 (4H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO))
G4 1.0-1.1 (3H, br, NCH2CH2CH2CH(CH3)CH2NH2) 1.3-1.4 (4H, br, NCH2CH2CH2CH(CH3)CH2NH2) 1.4-1.5 (3H, br, NCH2CH2CH2CH(CH3)CH2NH2) 1.5-1.6 (6H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 2.3-2.4 (6H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO) and NCH2CH2CH2CH(CH3)CH2NH2) 2.6-2.75 (6H, t, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO) and NCH2CH2CH2CH(CH3)CH2NH2) 2.95-3.1 (2H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 3.9-4.05 (8H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 4.05-4.15 (2H, t, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 6.8-6.9 (4H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 7.0-7.15 (4H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)
G5 1.5-1.6 (8H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO) and NCH2CH2CH2NC4H8) 1.6-1.75 (4H, br, NCH2CH2CH2NC4H8 (at 3,4 position)) 2.3-2.4 (6H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO) and NCH2CH2CH2NC4H8) 2.4-2.6 (6H, br, NCH2CH2CH2NC4H8 (at 2, 5 position)) 2.6-2.75 (4H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 2.95-3.1 (2H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 4.0-4.1 (8H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 4.1-4.15 (2H, t, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 6.8-6.9 (4H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 7.0-7.1 (4H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO))
G6 1.5-1.6 (6H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 2.5-2.6 (4H, t, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 2.95-3.1 (2H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 3.3-3.4 (2H, br, NC6H4SSC6H4NH2) 3.65-3.8 (4H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 4.0-4.1 (8H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 4.1-4.15 (2H, t, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 6.45-6.55 (4H, br, NC6H4SSC6H4NH2) 6.8-6.9 (4H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 7.0-7.1 (8H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO) and NC6H4SSC6H4NH2)
G7 1.2-1.4 (2H, br, NCH2CH2SSCH2CH2NH2) 1.5-1.6 (6H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 2.4-2.55 (4H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 2.55-2.6 (4H, br, NCH2CH2SSCH2CH2NH2) 2.6-2.7 (2H, br, NCH2CH2SSCH2CH2NH2 ) 2.8-2.9 (2H, t, NCH2CH2SSCH2CH2NH2) 2.95-3.1 (6H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 4.0-4.1 (8H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 4.1-4.15 (2H, t, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 6.8-6.9 (4H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 7.0-7.1 (4H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO))
G8 1.5-1.6 (6H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 2.4-2.5 (4H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 2.5-2.65 (6H, t, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO) and NCH2CH2C6H3(OCH3)2) 2.65-2.8 (2H, m, NCH2CH2C6H3(OCH3)2) 2.95-3.1 (2H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 3.65-3.8 (6H, t, NCH2CH2C6H3(OCH3)2) 3.9-4.05 (8H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 4.05-4.15 (2H, t, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(Coo)) 6.6-6.7 (3H, br, NCH2CH2C6H3(OCH3)2) 6.7-6.9 (4H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 7.0-7.1 (4H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO))
G9 1.5-1.6 (6H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 2.5-2.6 (4H, t, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 2.6-2.7 (t, NCH(CH2OH)2) 2.7-2.9 (4H, t, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 2.95-3.1 (2H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 3.25-3.5 (4H, br, NCH(CH2OH) 2) 3.6-3.7 (2H, br, NCH(CH2OH) 2) 4.0-4.1 (8H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 4.1-4.15 (2H, t, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 6.8-6.9 (4H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 7.0-7.1 (4H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO))
G10 0.85-1.0 (6H, br, NCH2CH2N(CH2CH3)2) 1.5-1.6 (6H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 2.35-2.45 (4H, t, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 2.45-2.6 (4H, br, NCH2CH2N(CH2CH3)2) 2.65-2.8 (4H, br, NCH2CH2N(CH2CH3)2) 2.95-3.1 (2H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 3.3-3.45 (4H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 4.0-4.1 (8H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 4.1-4.15 (2H, t, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 6.8-6.9 (4H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 7.0-7.1 (4H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO))
G11 1.5-1.6 (6H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 2.3-2.5 (4H, t, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 2.5-2.6 (8H, br, NCH2CH2N(CH2CH2OH)2) 2.65-2.75 (4H, t, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 2.95-3.1 (2H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 3.35-3.45 (4H, t, NCH2CH2N(CH2CH2OH)2) 3.55-3.65 (2H, br, NCH2CH2N(CH2CH2OH)2) 4.0-4.1 (8H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 4.1-4.15 (2H, t, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 6.8-6.9 (4H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 7.0-7.1 (4H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO))
G12 1.5-1.6 (8H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO) and NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 1.75-1.9 (2H, br, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 2.0-2.1 (2H, br, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 2.3-2.45 (4H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 2.5-2.6 (8H, br, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 2.65-2.75 (6H, br, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 2.75-2.85 (2H, br, NCH2CH2CH2 (C4H8N2)CH2CH2CH2NH2) 2.95-3.1 (6H, t, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 3.9-4.05 (8H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 4.05-4.15 (2H, t, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 6.8-6.9 (4H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO))
7.0-7.1 (4H, br, CH2CH2NCH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO))
G13 1.0-1.1 (4H, t, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 1.1-1.2 (2H, br, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO) at 4 position) 1.2-1.3(2H, br, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 1.45-1.6 (8H, br, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO) at 3, 5 position) 1.5-1.6 (6H, br, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 2.3-2.45 (4H, br, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 2.5-2.6 (8H, br, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO) at 2, 6 position) 2.95-3.1 (6H, br, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 4.0-4.1 (8H, br, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO))
4.1-4.15 (2H, t, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 6.8-6.9 (4H, br, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO)) 7.0-7.1 (4H, br, CH2CH2 (C5H9N)CH2CH2CH2 (C5H9N)CH2CH2(COO)CH2CH(OH)CH2OC6H4C(CH3)2C6H4OCH2CH(OH)CH2(COO))