S NE T
E C H N I C A L
N
O T E
An Approximate Differentiation Method of Inverse Simulation based on a Continuous System Simulation Approach David J. Murray-Smith University of Glasgow, School of Engineering, Rankine Building, Oakfield Avenue, Glasgow G12 8LT, United Kingdom;
[email protected]
6LPXODWLRQ1RWHV(XURSH61( '2,VQHWQ 5HFHLYHG2FWREHU $FFHSWHG1RYHPEHU
Abstract. Inverse simulation techniques allow inverse solutions to be found for a range of problems involving dynamic systems described by sets of linear or nonlinear ordinary differential equations. Techniques in common use generally involve iterative solutions based on discretised descriptions but continuous system simulation tools can also provide solutions and are often simpler to apply and computationally more efficient. This paper presents a method of inverse simulation which involves use of a very simple, but effective, approximation for derivative terms within the model. Discussion of results for linear and non-linear examples leads to the conclusion that this technique can be applied to a wide range of dynamic models that are of practical importance for engineering applications.
Introduction &RQYHQWLRQDOPRGHOOLQJDQGVLPXODWLRQLQYROYHVDSUR FHVVRIILQGLQJDPRGHOµRXWSXW¶IRUDJLYHQVHWRILQLWLDO FRQGLWLRQVDQGWLPHKLVWRU\RIµLQSXWV¶ZKHUHDVLQYHUVH PRGHOOLQJDQGVLPXODWLRQLVDSURFHVVLQZKLFKµLQSXWV¶ DUHIRXQGWKDWZLOOSURGXFHSUHVFULEHGPRGHOµRXWSXWV¶ ,QYHUVH VLPXODWLRQ PHWKRGV SURYLGH DQ DOWHUQDWLYH WR WKHXVHRIPDWKHPDWLFDOWHFKQLTXHVIRUWKHLQYHUVLRQRI G\QDPLFPRGHOVSDUWLFXODUO\LQWKHQRQOLQHDUFDVH1RW RQO\GRWKH\DYRLGWKHFRPSOH[LWLHVRIWKHPDWKHPDWLFDO DSSURDFKHV IRU QRQOLQHDU PRGHOV EXW WKH\ DOVR SURYLGH LQVLJKW WKDW PD\ QRW RWKHUZLVH EH VR UHDGLO\ DYDLODEOH IURPFRQYHQWLRQDOVLPXODWLRQWHFKQLTXHV
$QXPEHURIHVWDEOLVKHGLQYHUVHVLPXODWLRQPHWKRGV LQYROYH GLVFUHWLVDWLRQ RI FRQWLQXRXV PRGHOV ([DPSOHV LQFOXGH WKH VRFDOOHG GLIIHUHQWLDWLRQ DSSURDFK >@ >@ WKH ZLGHO\XVHG LQWHJUDWLRQ EDVHG DSSURDFKHV >@ >@ DQG RSWLPLVDWLRQEDVHG PHWKRGV >@ >@ $ SDSHU E\ 7KRPVRQ DQG %UDGOH\ SURYLGHV D XVHIXO UHYLHZ >@ RI VRPHRIWKHVHWHFKQLTXHVZKLFKDUHHVVHQWLDOO\LWHUDWLYH LQQDWXUHDQGZHUHGHYHORSHGLQLWLDOO\IRUDHURQDXWLFDO DSSOLFDWLRQV 2WKHU WHFKQLTXHV DUH EDVHG RQ FRQWLQXRXV V\VWHP VLPXODWLRQ PRGHOV DQG LQFOXGH WKH XVH RI GLIIHUHQWLDO DOJHEUDLF HTXDWLRQ '$( VROYHUV VXFK DV WKRVH DYDLOD EOH LQ WKH 0RGHOLFD HQYLURQPHQW VHH HJ >@ EXW '$( PHWKRGV GR QRW \HW DSSHDU WR KDYH EHHQ DSSOLHG URXWLQHO\ WR ODUJH DQG FRPSOH[ PRGHOV RI WKH W\SH WKDW W\SLFDOO\DULVHLQHQJLQHHULQJDSSOLFDWLRQV$XVHIXODQG SURYHQ DOWHUQDWLYH LQYROYHV WKH XVH RI IHHGEDFN SULQFL SOHV DQG FRQWLQXRXV V\VWHP VLPXODWLRQ WRROV VHH HJ >@ 7KH DSSUR[LPDWH GLIIHUHQWLDWLRQ PHWKRG RI LQYHUVH VLPXODWLRQ RXWOLQHG LQ WKLV SDSHU SURYLGHV \HW DQRWKHU DSSURDFK ZKLFK LQYROYHV FRQWLQXRXV V\VWHP VLPXODWLRQ PHWKRGVDQGPD\EHVLPSOHUWRDSSO\LQVRPHFDVHV,Q FRPPRQZLWKRWKHUPHWKRGVRILQYHUVHVLPXODWLRQLWKDV REYLRXVOLPLWDWLRQVEXWFDQEHXVHGIRUDUDQJHRIPRG HOVWUXFWXUHVRILPSRUWDQFHIRUHQJLQHHULQJDSSOLFDWLRQV
1 The Approximate Differentiation Method 7KLV LV D FRQWLQXRXV VLPXODWLRQ HTXLYDOHQW RI WKH GLV FUHWH µGLIIHUHQWLDWLRQ PHWKRG¶ 7KH EDVLF LGHD LV WR UH DUUDQJHWKHJLYHQPRGHOLQVWDWHVSDFHIRUPVRWKDWWKH LQSXWV RI LQWHUHVW DSSHDU RQ WKH OHIW KDQG VLGH RI WKH HTXDWLRQV
SNE 23(3-4) – 12/2013 111
D Murray-Smith
6LPSOH OLQHDU DQDO\VLV VKRZV WKDW WKLV OLQHDU VLQJOH LQSXW VLQJOHRXWSXW 6,62 V\VWHP PRGHO KDV SROHV DW SRVLWLRQV s UDGV s UDGV DQG s UDGV DQG ]HURVDWs MUDGV7KHUDQJHRIIUHTXHQ FLHV RI LQWHUHVW IRU WKLV PRGHO LV IURP WR UDGV7KH VHW RI RUGLQDU\ GLIIHUHQWLDO HTXDWLRQV IRU WKH V\VWHP DV JLYHQDERYHLV ݔሶ ଵ ൌ ݔଶ ݑ ݔሶ ଶ ൌ ݔଷ െ ͷ ݑ ݔሶ ଷ ൌ െݔଵ െ ͳͳݔଶ െ ݔଷ ͻ ݑ ݕൌ ݔଵ
'HULYDWLYHVRIVWDWHYDULDEOHVDSSHDULQJRQWKHULJKW KDQG VLGH FDQ WKHQ EH DSSUR[LPDWHG XVLQJ D VLPSOH FRQWLQXRXV UHSUHVHQWDWLRQ EDVHG RQ WKH XVH RI DQ LQWH JUDWRU EORFN DQG IHHGEDFN SDWKZD\ DV VKRZQ LQ WKH EORFN GLDJUDP RI )LJXUH 7KLV PD\ EH VHHQ IURP WKH ILUVWRUGHUHTXDWLRQGHILQLQJWKDWV\VWHPZKLFKLVJLYHQ E\ ௗ௪ ௗ௧
TN
An Approximate Differentiation Method of Inverse Simulation
ଵ
ൌ ൫ݒሺݐሻ െ ݓሺݐሻ൯ ்
/HWWKHGHVLUHGRXWSXWEHGHQRWHGE\ݔଵௗ 7KHGHULYDWLYH ଵ
ݔሶ ଵ PD\WKHQEHDSSUR[LPDWHGE\ ሺݔଵௗ െ ݔଵ ሻDQGZH ்
KDYHDQHZµRXWSXWHTXDWLRQ¶RIWKHIRUP
ଵ
ݑൌ ݔଶ െ ݔሶ ଵ ݔଶ െ ሺݔଵௗ െ ݔଵ ሻ ்
Figure 1: Block diagram of the approximate
:HQRZKDYHDPRGLILHGVHWRIHTXDWLRQVRIWKHIRUP
differentiator.The block 1/s represents the variable s.
,IWKHYDULDEOHvt LQ)LJXUHLVUHSODFHGE\ݔௗ ሺݐሻZKLFK UHSUHVHQWV WKHGHVLUHG WLPH KLVWRU\ IRU D VWDWH YDULDEOH ݔ WKHQSURYLGHGWKHWLPHFRQVWDQWTLVYHU\VPDOOLQUHODWLRQ WR WKH G\QDPLFV RI WKH JLYHQ PRGHO WKH YDULDEOH wt LQ )LJXUH LV D FORVH DSSUR[LPDWLRQ WR WKH GHVLUHGYDULDEOH ݔௗ ሺݐሻDQGWRWKHVWDWHYDULDEOHݔ ሺݐሻǤ7KHTXDQWLW\IRXQG DWWKHLQSXWWRWKHLQWHJUDWRUEORFNLQ)LJXUHLVJLYHQE\ ଵ ்
ሺݔௗ ሺݐሻ െ ݔ ሺݐሻሻ DQG LV WKXV DQ DSSUR[LPDWLRQ WR WKH
GHULYDWLYH ݔሶ +HQFH D GHULYDWLYH RI D VWDWH YDULDEOH ݔሶ ZLWKLQ D JLYHQ VWDWHVSDFH PRGHO PD\ EH UHSODFHG E\ D ଵ
TXDQWLW\ ሺݔௗ ሺݐሻ െ ݔ ሺݐሻሻ ZKHUH ݔௗ ሺݐሻ LV WKH GHVLUHG ்
WLPHKLVWRU\ 7KH DSSURDFK ZKLFK ZDV PHQWLRQHG LQ DQ LQYLWHG NH\QRWHOHFWXUHDWWKHWK(8526,0&RQJUHVVLQ6HSWHP EHU>@LVEHVWSUHVHQWHGWKURXJKDVLPSOHLOOXVWUD WLYH H[DPSOH ZKLFK KDV DOVR EHHQ XVHG LQ LQYHVWLJDWLRQV RIRWKHULQYHUVHVLPXODWLRQPHWKRGV>@>@&RQVLGHUD OLQHDU VLQJOHLQSXW VLQJOHRXWSXW V\VWHP PRGHO RI WKH IRUP ݔሶ ൌ ݔܣ ݑܤ ݕൌ ݔܥ ݑܦ Ͳ ͳ Ͳ ͳ ZKHUH ܣൌ Ͳ Ͳ ͳ ൩ ܤൌ െͷ൩ െ െͳͳ െ ͻ ܥൌ ሾͳ Ͳ Ͳሿ ܦൌ Ͳ 112 SNE 23(3-4) – 12/2013
ଵ
ଵ
்
்
ݔሶ ଵ ൌ െ ݔଵ ݔଵௗ
operation of integration in terms of the Laplace
ହ
ହ
ݔሶ ଶ ൌ ݔଵ ͷݔଶ ݔଷ െ ݔଵௗ ݔሶ ଷ ൌ െሺ
ଽ ்
்
ሻݔଵ െ ͺͲݔଶ െ ݔଷ ଵ
ଵ
்
்
் ଽ ்
ݔଵௗ
ݑൌ െ ݔଵ െ ݔଶ ݔଵௗ 7KLV VHW RI HTXDWLRQV KDV ]HURV DW s UDGV s UDGV s UDGV DQG SROHV DW s j UDGV DQGDWs 7UDGVVRFOHDUO\WKH]HURVRIWKHLQYHUVH VLPXODWLRQPRGHODUHDWWKHVDPHSRVLWLRQVDVWKHSROHV RIWKHJLYHQPRGHODQGWKHSROHVOLHDWWKHSRVLWLRQVRI WKH]HURVRIWKDWPRGHODSDUWIURPDQDGGLWLRQDOSROHDW s 73URYLGHGWKHWLPHFRQVWDQWT FDQEHPDGHYHU\ VPDOOWKLVDGGLWLRQDOSROHRIWKHLQYHUVHVLPXODWLRQFDQ EHSRVLWLRQHGDWDSRLQWLQWKHs-SODQHIDUIURPWKHRWKHU SROHV DQG ]HURV ZKHUH LWV HIIHFW LV LQVLJQLILFDQW )RU H[DPSOHDYDOXHRITRIVZRXOGJLYHDQDGGLWLRQ DO SROH DW s UDGV DQG WKLV LV VR IDU UHPRYHG IURP DOO WKH RWKHUSROHV DQG]HURV WKDW LW ZRXOG KDYH D QHJOLJLEOH LQIOXHQFH RQ WKH G\QDPLF EHKDYLRXU RI WKH LQYHUVHVLPXODWLRQ2QHFRXOGRIFRXUVHPDNHWKHWLPH FRQVWDQWTHYHQVPDOOHUEXWWKLVZRXOGWHQGWRLQFUHDVH WKH VWLIIQHVV RI WKH LQYHUVH VLPXODWLRQ DQG WKHUH LV D FOHDU WUDGHRII EHWZHHQ WKH RYHUDOO DFFXUDF\ RI WKH LQ YHUVHVLPXODWLRQDQGFRPSXWDWLRQDOHIILFLHQF\ &RQVLGHU WKH VSHFLILF FDVH RI DQ GHVLUHG WLPH KLVWRU\ IRU WKH VWDWH YDULDEOH ݔଵ ሺݐሻ ZKLFK WDNHV WKH IRUP RI D WULDQJXODU ZDYHIRUP LQYROYLQJ D QHJDWLYH JRLQJ UDPS VWDUWLQJ IURP ]HUR DW WLPH t ZLWK D JUDGLHQW XQLWVVFKDQJLQJWRDSRVLWLYHVORSHRIXQLWVVDWWLPHt VDQGWKHQUHSHDWLQJWKLVSDWWHUQDWWLPHt V
TN
D Murray-Smith
An Approximate Differentiation Method of Inverse Simulation
8VLQJ0$7/$%VRIWZDUHWRLPSOHPHQWWKHLQYHUVH VLPXODWLRQ EDVHG RQ (TXDWLRQV IRU WKLV GHVLUHG IRUPRIRXWSXWZDYHIRUPDQGDYDOXHRIT RIVZH ILQG WKDW WKH UHTXLUHG LQSXW KDV WKH IRUP VKRZQ LQ WKH XSSHU WUDFH RI )LJXUH 7KH ORZHU WUDFHV VKRZ WKH UH TXLUHG RXWSXW WRJHWKHU ZLWK WKH RXWSXW IRXQG IURP D IRUZDUGVLPXODWLRQIRUWKHJLYHQPRGHOZKHQWKHZDYH IRUPREWDLQHGIURPWKHLQYHUVHVLPXODWLRQLVDSSOLHGDV LQSXW,WFDQEHVHHQIURPWKLVWKDWWKHWZRSORWVDOPRVW FRLQFLGH VR WKH LQSXW IRXQG IURP LQYHUVH VLPXODWLRQ JHQHUDWHV WKH UHTXLUHG RXWSXW DOPRVW H[DFWO\ IRU WKH FKRVHQYDOXHRIT
Figure 2: The upper trace shows the input found from inverse simulation of the linear SISO system of Equations (2) and (3). The lower traces (superimposed) show the demanded output
Figure 3: Schematic diagram of the coupled-tanks system.
,I WKH OHYHOV RI OLTXLG LQ WKH WZR WDQNV H DQG H DUH UHJDUGHGDVRXWSXWTXDQWLWLHVDQGWKHIORZUDWHVIURPWKH SXPSV DV LQSXWV D WZRLQSXW WZRRXWSXW VHFRQGRUGHU QRQOLQHDU VWDWHVSDFH GHVFULSWLRQ PD\ EH GHYHORSHGIRU WKLV V\VWHP XVLQJ VLPSOH SK\VLFDO SULQFLSOHV EDVHG RQ WKH IDFW WKDW WKH UDWHV RI FKDQJH RI YROXPH RI OLTXLG LQ HDFK WDQN PXVW EH HTXDO WR WKH GLIIHUHQFH EHWZHHQ WKH WRWDOIORZUDWHLQWRWKDWWDQNDQGWKHWRWDOIORZUDWHRXW VHHHJ>@>@ )RUVLWXDWLRQVLQZKLFKWKHOLTXLGOHYHOLQ7DQNLV JUHDWHU WKDQ WKH OHYHO LQ 7DQN WKH HTXDWLRQV DUH DV IROORZV ௗுభ ௗ௧
together with the output obtained from
ൌ
ொభ ሺ௧ሻ భ
െ
భ భ భ
ඥʹ݃ሺܪଵ ሺݐሻ െ ܪଶ ሺݐሻሻ
application of the input found from inverse simulation to the conventional forward simulation model for this system.
2 An Example Involving a Nonlinear Model &RQVLGHU D PDWKHPDWLFDO PRGHO RI D FRXSOHGWDQNV V\VWHPVKRZQLQVFKHPDWLFIRUPLQ)LJXUHLQYROYLQJ WZRLQWHUFRQQHFWHGWDQNVRIOLTXLG7DQNDQG7DQN ZLWK LQSXW IORZ UDWHV QL DQG QL UHVSHFWLYHO\ 7KHVH LQSXWV DUH IURP HOHFWULFDOO\ GULYHQ YDULDEOHVSHHG SXPSV7KHUHLV DVLQJOHRXWOHWIORZQ23 IURPWKHVHFRQG WDQN ZKLFK PD\ EH DGMXVWHG PDQXDOO\ E\ PHDQV RI D WDS%RWKWDQNVDUHHTXLSSHGZLWKVHQVRUVWKDWFDQGHWHFW WKHOHYHORIOLTXLGDQGSURYLGHDSURSRUWLRQDORXWSXWDV DQHOHFWULFDOYROWDJHVLJQDO
ௗுమ ௗ௧
ൌ
ொమ ሺ௧ሻ మ
భ భ
ඥʹ݃ሺ ܪሺݐሻ െ ܪሺݐሻሻ
ଵ ଶ మ ʹܽ ʹ݀ܥ ඥʹ݃ሺܪଶ ሺݐሻ െ ܪଷ ሻ െ ʹܣ
9DOXHV RI SDUDPHWHUV DUH GHILQHG EHORZ IRU D VSHFLILF ODERUDWRU\VFDOHV\VWHP>@>@ &URVVVHFWLRQDO DUHDV RI WDQNV A A î P &URVVVHFWLRQDO DUHD RI RULILFH a î P &URVVVHFWLRQDODUHDRIRULILFHa îP &RHIILFLHQWRIGLVFKDUJHRIRULILFHCd &RHIILFLHQWRIGLVFKDUJHRIRULILFHCd +HLJKWRIRXWOHWDERYHEDVHRIWDQNH P *UDYLWDWLRQDOFRQVWDQWg PV 0D[LPXPIORZUDWHQiPD[ QiPD[ îPV 0LQLPXPIORZUDWHQiPLQ QiPLQ PV 0D[LPXPOLTXLGOHYHOHPD[ HPD[ P
SNE 23(3-4) – 12/2013 113
D Murray-Smith
An Approximate Differentiation Method of Inverse Simulation
TN
7KLV PRGHO LV QRQOLQHDU LQ VWUXFWXUH EHFDXVH RI WKH QRQOLQHDU UHODWLRQVKLS EHWZHHQ WKH OLTXLG OHYHOV LQ WKH 7DQNVDQGDQGWKHIORZEHWZHHQWKHPDQGDOVREH FDXVH RI WKH QRQOLQHDU UHODWLRQVKLS EHWZHHQ WKH RXWSXW IORZUDWHDQGWKHOLTXLGOHYHOLQ7DQN 7KHLQYHUVHVLPXODWLRQGHYHORSHGIURPWKHDSSOLFD WLRQRIWKHDSSUR[LPDWHGLIIHUHQWLDWLRQPHWKRGLVUHDGL O\ REWDLQHG XVLQJ WKH SULQFLSOHV RXWOLQHG DERYH DQG LQYROYHVWKHIROORZLQJVHWRIHTXDWLRQV ௗுభ ௗுమ ௗ௧ ܳଵ ሺݐሻ
ൌ
భ ்
ଵ
ൌ ሾܪଵ ሺݐሻ െ ܪଵ ሺݐሻሿ ்
ௗ௧
ଵ
ൌ ሾܪଶ ሺݐሻ െ ܪଶ ሺݐሻሿ ்
ሾܪଵ ሺݐሻ െ ܪଵ ሺݐሻሿ
Figure 4: Required liquid levels for the first case considered.
ܥௗଵ ܽଵ ඥʹ݃ሺܪଵ ሺݐሻ െ ܪଶ ሺݐሻሻ ܳଶ ሺݐሻ ൌ
మ ்
ሾܪଶ ሺݐሻ െ ܪଶ ሺݐሻሿ
െܥௗଵ ܽଵ ඥʹ݃ሺܪଵ ሺݐሻ െ ܪଶ ሺݐሻ െܥௗଶ ܽଶ ඥʹ݃ሺܪଶ ሺݐሻ െ ܪଷ ሻ ZKHUHܪଵ ሺݐሻ DQGܪଶ ሺݐሻDUHWKHUHTXLUHGWLPHKLV WRULHVRIOLTXLGOHYHOVLQ7DQNVDQGUHVSHFWLYHO\ )LJXUH DQG )LJXUH VKRZ UHVXOWV REWDLQHG XVLQJ 0$7/$% IRU WKH PHWKRG RXWOLQHG DERYH IRU D FDVH LQYROYLQJ WKH UHTXLUHG WLPH KLVWRULHV RI OHYHO FKDQJHV VKRZQ LQ )LJXUH 7KH YDOXH RI WKH WLPH FRQVWDQW T XVHGLQWKHHTXDWLRQVIRUWKHLQYHUVHVLPXODWLRQLVV ZKLFKLVYHU\VPDOOLQUHODWLRQWRWKHG\QDPLFFKDUDFWHU LVWLFVRIWKHV\VWHP7KHUHVXOWVIURPWKHLQYHUVHVLPXOD WLRQIRUWKHGHVLUHGOHYHOFKDQJHVRI)LJXUHDUHJLYHQ LQ)LJXUHDQGWKHVHVKRZWKDWWKHSDWWHUQRILQSXWIORZ UDWH FKDQJHV GR QRW FDXVH HLWKHU RI WKH LQSXWV WR UHDFK WKHPD[LPXPIORZUDWHRIîPVRUWRGURSWR]HUR IORZ UDWH WKH PLQLPXP DOORZHG DW DQ\ WLPH LQ WKH VLPXODWHG WHVW 7KH UHVXOWV GR KRZHYHU VKRZ VWURQJ LQWHUDFWLRQVEHWZHHQWKHWZRWDQNVHVSHFLDOO\GXULQJWKH LQLWLDOSKDVHRIWKHWHVWZKHUHWKHLQSXWIORZWR7DQN IDOOVUDSLGO\WRFRPSHQVDWHIRUWKHULVLQJOHYHOLQ7DQN DQGWKXVDOORZVWKHUHTXLUHGOHYHOLQ7DQNWREHPDLQ WDLQHG :KHQ WKH LQSXW IORZ SDWWHUQV VKRZQ LQ )LJ XUHDUHDSSOLHGWRDIRUZDUGVLPXODWLRQRIWKHFRXSOHG WDQNV V\VWHP WKH OHYHOV RI OLTXLG LQ WKH WZR WDQNV DUH YHU\FORVHWRWKHUHTXLUHGOHYHOVLQ)LJXUHDVLVVKRZQ E\WKHUHVXOWVRI)LJXUHZKLFKVKRZPD[LPXPGLIIHU HQFHV RI WKH RUGHU RI î P EHWZHHQ WKH OHYHOV IRXQG IURP IRUZDUG VLPXODWLRQ UHVXOWV DQG WKH GHVLUHG OHYHOV 114 SNE 23(3-4) – 12/2013
Figure 5: Flow rates determined by inverse simulation for the first case considered.
Figure 6: Differences between reference liquid level time histories and liquid levels found by applying inputs from inverse simulation to the forward simulation model.
TN
D Murray-Smith
An Approximate Differentiation Method of Inverse Simulation
7KH SDWWHUQ RI GHPDQGHG UHIHUHQFH OHYHOV VKRZQ LQ )LJXUH UHODWHV WR D FDVH LQ ZKLFK WKH UHTXLUHG OHYHO FKDQJHVUHVXOWLQRQHRIWKHLQSXWIORZUDWHVUHDFKLQJLWV PD[LPXP YDOXH RI î PV 7KH LQSXW IORZ UDWH WR 7DQNUHPDLQV DW WKDW PD[LPXP YDOXH IRU DSHULRG RI DERXW V DQG WKHQ IDOOV WR D QHZ FRQVWDQW YDOXH RI DERXWî PVZKLOHWKHLQSXWIORZWR7DQNGURSV WR]HURDVLVVKRZQLQ)LJXUH,QWKLVFDVHLIWKHLQSXW IORZUDWHVREWDLQHGIURPLQYHUVHVLPXODWLRQDUHDSSOLHG WRWKHIRUZDUGVLPXODWLRQPRGHOVLJQLILFDQWGLIIHUHQFHV DUH IRXQG EHWZHHQ WKH OHYHOV DFKLHYHG DQG WKH GHVLUHG OHYHOV DV VKRZQ LQ )LJXUH 7KH LQYHUVH VLPXODWLRQ WKXVVKRZVLQWKLVFDVHWKDWIRUWKHJLYHQV\VWHPFRQ ILJXUDWLRQ WKH UHTXLUHG SDWWHUQ RI OLTXLG OHYHO FKDQJHV FDQQRW EH DFKLHYHG +HQFH WKLV PLJKW VXJJHVW WKDW GH VLJQFKDQJHVZRXOGEHUHTXLUHGZLWKLQWKHV\VWHPLIWKLV SDWWHUQ RI OHYHO FKDQJHV ZDV DQ HVVHQWLDO UHTXLUHPHQW IRUVRPHVSHFLILFDSSOLFDWLRQ
Figure 9: Differences between the desired levels and the levels found from forward simulation of the coupled-tanks model for the case defined by the inputs of Figure 8.
3 Discussion and Conclusions 7KH OLQHDU H[DPSOH LQYROYLQJ D VLQJOHLQSXW VLQJOH RXWSXW PRGHO GHILQHG LQ VWDWHYDULDEOH IRUP VKRZV WKDW WKH DSSUR[LPDWH GLIIHUHQWLDWLRQ DSSURDFK WR LQYHUVH VLPXODWLRQFDQJLYHUHVXOWVLQZKLFKSROHVRIWKHLQYHUVH VLPXODWLRQ PDWFK WKH ]HURV RI WKH JLYHQ PRGHO 7KH DSSUR[LPDWLRQ LV HTXLYDOHQW WR DGGLQJ RQH SROH DW D SRLQWLQWKHsSODQHZKLFKLVORFDWHGRQWKHQHJDWLYHUHDO D[LVIDUIURPDOOWKHSROHVDQG]HURVRIWKHPRGHO7KH HIIHFWRIWKLVDGGLWLRQDOSROHUHVXOWLQJIURPWKHDSSUR[ LPDWLRQFDQWKXVEHPDGHQHJOLJLEO\VPDOOE\FKRRVLQJ D VPDOO YDOXH IRU WKH WLPH FRQVWDQW DVVRFLDWHG ZLWK WKH GLIIHUHQWLDWLRQSURFHVV
Figure 7: Required liquid levels for second case involving a larger difference between final levels in Tank 1 and Tank2 resulting in a required flow rate for Tank 1 that exceeds the maximum.
Figure 8: Input flow rates found using inverse simulation
,QWKHFDVHRIDPXOWLLQSXWV\VWHPLIDOOWKHLQSXWV DUH WR EH IRXQG E\ LQYHUVH VLPXODWLRQ WKH QXPEHU RI DGGLWLRQDOWLPHFRQVWDQWVZRXOGEHHTXDOWRWKHQXPEHU RILQSXWVEXWWKHWLPHFRQVWDQWVZRXOGDJDLQKDYHQHJ OLJLEOHHIIHFWLIWKH\KDGDSSURSULDWHVPDOOYDOXHV
7KH VXFFHVV RI WKH DSSUR[LPDWH GLIIHUHQWLDWLRQ DS SURDFK IRU WKH FDVH RI D PRGHO LQYROYLQJ QRQOLQHDU HTXDWLRQV KDV EHHQ GHPRQVWUDWHG WKURXJK XVH RI WKH FRXSOHGWDQNVH[DPSOH,QWKLVFDVHSURYLGHGWKHPRGHO LQSXW YDULDEOHV DUH ZLWKLQ WKHLU OLPLWLQJ YDOXHV WKH LQ YHUVH VLPXODWLRQ JLYHV DQ DFFXUDWH SUHGLFWLRQ RI WKH LQSXWV UHTXLUHG WR SURGXFH GHVLUHG PRGHO RXWSXW WLPH KLVWRULHV
for level variations defined in Figure 7.
SNE 23(3-4) – 12/2013 115
D Murray-Smith
An Approximate Differentiation Method of Inverse Simulation
7KHPHWKRGDOVRSURYLGHVWKHXVHUZLWKDFOHDULQGL FDWLRQRIWKHHIIHFWVRILQSXWOLPLWVZKHQWKH\DULVHWKXV SURYLGLQJ LQVLJKW DERXW WKH UHDVRQV ZK\ D VSHFLILF GH VLUHGWLPHKLVWRU\RIRXWSXWVLVQRWDFKLHYDEOH'HSHQG LQJRQWKHFRQWH[WLQZKLFKLQYHUVHVLPXODWLRQLVEHLQJ DSSOLHGVXFKVLWXDWLRQVPD\OHDGWRPRGLILFDWLRQRIWKH GHVLUHGSDWWHUQRIRXWSXWVRUWRDFKDQJHLQWKHGHVLJQRI WKHV\VWHPUHSUHVHQWHGE\WKHPRGHO $V PHQWLRQHG LQ WKH LQWURGXFWRU\ VHFWLRQ RI WKLV QRWHDQRWKHUFRPPRQO\XVHGDSSURDFKWRLQYHUVHVLPX ODWLRQ ZKLFK XVHV FRQWLQXRXV V\VWHP VLPXODWLRQ PHWK RGV LV EDVHG XSRQ IHHGEDFN WHFKQLTXHV VHH HJ >@ 7KLVKDVEHHQIRXQGWREHDSRZHUIXODSSURDFKDQGKDV EHHQDSSOLHGWRDZLGHUDQJHRISUDFWLFDOV\VWHPV+RZ HYHU WKDW PHWKRG UHTXLUHV WKH GHVLJQ RI D IHHGEDFN VWUXFWXUHDURXQGWKHJLYHQVLPXODWLRQPRGHOZKLFKFDQ EH WLPHFRQVXPLQJ DQG GLIILFXOW IRU WKRVH ZLWK OLWWOH H[SHULHQFH RI FORVHGORRS V\VWHP GHVLJQ ,W FDQ DOVR SUHVHQW VLJQLILFDQW SUREOHPV LI OLPLW F\FOH RVFLOODWLRQV DULVH 7KH DSSUR[LPDWH GLIIHUHQWLDWLRQ PHWKRG WKXV SURYLGHV DQ LQWHUHVWLQJ DOWHUQDWLYH DSSURDFK ZKLFK DYRLGVVXFKGLIILFXOWLHVEXWLVDOVREDVHGRQFRQWLQXRXV V\VWHPVLPXODWLRQSULQFLSOHV References >@ .DWR26XJLXUD,$QLQWHUSUHWDWLRQRIDLUSODQHPRWLRQ DQGFRQWURODVDQLQYHUVHSUREOHPJournal of Guidance Control and Dynamics >@ 7KRPVRQ'*%UDGOH\55HFHQWGHYHORSPHQWVLQWKH FDOFXODWLRQRILQYHUVHVROXWLRQVRIWKHKHOLFRSWHUHTXD WLRQVRIPRWLRQ,Q3URFHHGLQJVRI8.6LPXODWLRQ &RXQFLO&RQIHUHQFH8QLYHUVLW\&ROOHJHRI1RUWK:DOHV 6HSW8.6&*KHQW%HOJLXP >@ +HVV5$*DR&:DQJ6+$JHQHUDOL]HGWHFKQLTXHIRU LQYHUVHVLPXODWLRQDSSOLHGWRDLUFUDIWPDQHXYHUV. Journal of Guidance Control and Dynamics. >@ 5XWKHUIRUG67KRPVRQ'*,PSURYHGPHWKRGRORJLHV IRULQYHUVHVLPXODWLRQAeronautical Journal >@ &HOL52SWLPL]DWLRQEDVHGLQYHUVHVLPXODWLRQRIDKHOL FRSWHUVODORPPDQRHXYUH. Journal of Guidance, Control and Dynamics
116 SNE 23(3-4) – 12/2013
TN
>@ /X/0XUUD\6PLWK'-7KRPVRQ'*,VVXHVRIQXPHU LFDODFFXUDF\DQGVWDELOLW\LQLQYHUVHVLPXODWLRQSimulation Modelling Practice and Theory >@ 7KRPVRQ'%UDGOH\5,QYHUVHVLPXODWLRQDVDWRROIRU IOLJKWG\QDPLFVUHVHDUFK±3ULQFLSOHVDQGDSSOLFDWLRQV Progress in Aerospace Sciences. >@ 7KPPHO0/RR\H*.XU]H02WWHU0%DOV-1RQ OLQHDULQYHUVHPRGHOVIRUFRQWURO,Q6FKPLW]*HG 3URFHHGLQJVRIWKHWK,QWHUQDWLRQDO0RGHOLFD&RQIHU HQFH+DPEXUJ0DUFK0RGHOLFD$VVRFLDWLRQ /LQN|SLQJ6ZHGHQ>2QOLQH@ KWWSZZZ0RGHOLFDRUJHYHQWV&RQIHUHQFH >@ +DPHO3*$HURVSDFHYHKLFOHPRGHOOLQJUHTXLUHPHQWV IRUKLJKEDQGZLGWKIOLJKWFRQWURO,Q&RRN095\FURIW 0-HGV$HURVSDFH9HKLFOH'\QDPLFVDQG&RQWURO &ODUHQGRQ3UHVV2[IRUG8. >@ *UD\*-YRQ*UQKDJHQ:$QLQYHVWLJDWLRQRIRSQ ORRSDQGLQYHUVHVLPXODWLRQDVQRQOLQHDUPRGHOYDOLGD WLRQWRROVIRUKHOLFRSWHUIOLJKWPHFKDQLFVMathematical and Computer Modelling of Dynamical Systems >@ %XFKKRO]--YRQ*UQKDJHQ:,QYHUVLRQ,PSRVVLEOH" 7HFKQLFDO5HSRUW8QLYHUVLW\RI$SSOLHG6FLHQFHV%UH PHQ*HUPDQ\6HSW >@ 7DJDZD@ 0XUUD\6PLWK'-)HHGEDFNPHWKRGVIRULQYHUVHVLPXOD WLRQRIG\QDPLFPRGHOVIRUHQJLQHHULQJV\VWHPVMathematical and Computer Modelling of Dynamical Systems. >@ 0XUUD\6PLWK'-/RRNLQJDWSUREOHPVWKHRWKHUZD\ URXQG(QJLQHHULQJDSSOLFDWLRQVRILQYHUVHVLPXODWLRQ EDVHGRQFRQWLQXRXVV\VWHPVLPXODWLRQPHWKRGV,QYLWHG .H\QRWH/HFWXUHWK(8526,0&RQJUHVV&DUGLII :DOHV8.6HSW >2QOLQH@6XPPDU\DQGVOLGHV.H\QRWH/HFWXUH KWWSHXURVLPLQIR >@ /X/,QYHUVH0RGHOOLQJDQG,QYHUVH6LPXODWLRQIRU(Q JLQHHULQJ$SSOLFDWLRQV/DPEHUW6DDUEUFNHQ*HUPD Q\ >@ *RQJ00XUUD\6PLWK'-$SUDFWLFDOH[HUFLVHLQVLPX ODWLRQPRGHOYDOLGDWLRQMathematical and Computer Modelling of Dynamical Systems.