Carpet Wear Classification based on Support Vector Machine Pattern ...

6 downloads 343 Views 363KB Size Report
Support Vector Machine Pattern. Recognition Approach ... Automated classifier. Computer classification. 0 loops. ICCP'09, Cluj Napoca, August 27-29, 2009.
ICCP’09, Cluj Napoca, August 27-29, 2009

Carpet Wear Classification based on Support Vector Machine Pattern Recognition Approach 1,2

C. Copot, S. Syafiie, S. Vargas, R. de Keyser, L. van Langenhove, C. Lazar 2

4

3

2

1

Department of Automatic Control and Applied Informatics, “Gheorghe Asachi” Tehnical University of Iasi 2 Department of Electrical energy, Systems and Automation, Ghent University 3 Department of Telecommunication, Ghent University 4 Department of Textile, Ghent University

1

Cosmin COPOŢ – “Gheorghe Asachi” Tehnical University of Iasi

ICCP’09, Cluj Napoca, August 27-29, 2009

Outline

● ● ● ● ● ●

Introduction Features extraction PCA (Principal Component Analysis) Features classification Results Conclusion

Cosmin COPOŢ – “Gheorghe Asachi” Tehnical University of Iasi

ICCP’09, Cluj Napoca, August 27-29, 2009 Introduction

Objective Objective 0 loops

Carpet sample

Mechanical wear

Visual assessment by human expert (compared with standard)

5000 loops 10000 loops 15000 loops 20000 loops 25000 loops

Label 5 4.5 4 . . . 1

Automated classifier

Human classifier 3D Laser Scanner

Co-occurrence matrix

Computer classification

Computer LABEL

Cosmin COPOŢ – “Gheorghe Asachi” Tehnical University of Iasi

ICCP’09, Cluj Napoca, August 27-29, 2009

Data Acquisition

Fig 1. Digital image

Introduction

Fig 2. Laser image

Cosmin COPOŢ – “Gheorghe Asachi” Tehnical University of Iasi

ICCP’09, Cluj Napoca, August 27-29, 2009 Features extraction

Co-occurrence matrix ¾ Co-occurrence matrix composed 1

3

4

2

7

1

1

2

5

6

3

6

7

1

2

1

1

2

7

5

Gray-scale matrix

3

4

5

6

7

2

3

1

0

0

0

0

0

0

0

0

1

0

2

0

0

0

1

0

1

0

4

0

1

0

0

0

0

0

5

0

0

0

0

0

1

0

6

0

0

0

0

0

0

1

7

1

0

0

0

1

0

0

1

1

2

2 3

Co-occurrence matrix ( 0 o & d = 1)

Cd ( g (i, j ), g (i + k , j + l )) = Cd ( g (i, j ), g (i + k , j + l )) + 1 Where:

d = k2 + l2

Cosmin COPOŢ – “Gheorghe Asachi” Tehnical University of Iasi

ICCP’09, Cluj Napoca, August 27-29, 2009

Haralick’s Features 9 9 9 9 9 9 9 9 9 9 9 9 9

Features extraction

Energy Sum Entropy Entropy Sum Variance Inertia Difference Variance Homogeneity Difference Entropy Contrast Informational Measures of Correlation Correlation Maximal Correlation Coefficient Sum Average Theoretical representation

Cosmin COPOŢ – “Gheorghe Asachi” Tehnical University of Iasi

ICCP’09, Cluj Napoca, August 27-29, 2009

Features Validation

Features extraction

Name of carpet

Human expert classification

20 kl 517

BMW

20 kl 517 – 2

2.5

20 kl 517 – 4

2.5

20 kl 517 – 6

2.5

20 kl 517 – 8

2

20 kl 517 – 10

2

20 kl 517 – 12

2

Table of human expert Haralick feature - Energy

Cosmin COPOŢ – “Gheorghe Asachi” Tehnical University of Iasi

ICCP’09, Cluj Napoca, August 27-29, 2009 PCA

What and why PCA?

¾ Principal Component Analysis is a useful technique used to reduce the dimensionality of large data sets, such as those from micro array analysis; ¾ When there are more than three variables, it is more difficult to visualize graphically their relationships. Principal Components 0%

2% 4%

0%

PC1 = 94%

PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 PC 9 PC 10 PC 11 PC 12 PC 13 PC 14

Cosmin COPOŢ – “Gheorghe Asachi” Tehnical University of Iasi

ICCP’09, Cluj Napoca, August 27-29, 2009 PCA

PCA Results carpet KL-517

class 2 class 2.5 class 5

carpet KL-517

60

class 2 class 2.5 class 5

40

40 30 20

20

PCA 3

10

PCA 2

0

0 -10 -20

-20

-30 -40

-40

-50 100 50

-60

100 50

0 -80 -150

-100

-50

0

PCA 1

50

100

PCA 2

2D Plotting of first tow PC

0 -50

-50

-100 -100

-150

PCA 1

3D Plotting of first third PC

Cosmin COPOŢ – “Gheorghe Asachi” Tehnical University of Iasi

ICCP’09, Cluj Napoca, August 27-29, 2009 Features classification

Binary SVM

¾ A separated hyperplane:

wT x + b = 0 wT x + b > 0 if

y =1

wT x + b < 0 if

y = −1 Where

⎡ + 1⎤ w T x + b = ⎢⎢ 0 ⎥⎥ ⎢⎣ − 1 ⎥⎦

- x is training data - y is indicator vector

Cosmin COPOŢ – “Gheorghe Asachi” Tehnical University of Iasi

ICCP’09, Cluj Napoca, August 27-29, 2009 Features classification

Nonlinear Nonlinear -- SVM SVM

Input space

k ( xi , x j ) = ( xi x j + 1) p

k ( xi , x j ) = e

−|| x − y|| / 2σ 2

The separable plane will be:

Feature space

- polynomial kernel - Gaussian kernel

k ( xi , x j ) wT + b = 0

Cosmin COPOŢ – “Gheorghe Asachi” Tehnical University of Iasi

ICCP’09, Cluj Napoca, August 27-29, 2009 Features classification

Multi – class SVM ¾ One - Against - All decomposition 8

c las s c las s c las s c las s c las s

6

1 2 3 4 5

PC 2

4

2

0

-2

-4

-6 -4

-2

0

2

PC 1

4

6

8

Cosmin COPOŢ – “Gheorghe Asachi” Tehnical University of Iasi

ICCP’09, Cluj Napoca, August 27-29, 2009 Results

Testing Results ¾For every carpet are used: - 4 points for training - 1 point for testing

Type of carpet

Polynomial kernel %

Gaussian kernel %

A8 – 501

84,4

84,4

A8 – 701

84,4

100

Big 4

100

100

20 KL 803 beige

84,4

84,4

LA 7

84,4

100

Pr 84

100

100

20 KL 517

100

100

Big 8

86

86

LA 9

72

100

20 KL 803

100

100

Over all

89,56

95,48

Table of percentage classification

Cosmin COPOŢ – “Gheorghe Asachi” Tehnical University of Iasi

ICCP’09, Cluj Napoca, August 27-29, 2009 Results

SVM Classification carpet KL-517 class 2 class 2.5 class 5 SVM 40 20

PCA 3

0 -20 -40 -60 60 40 20 0

100

-20

50 0

-40 -50

-60 PCA 2

-80

-100 -150

PCA 1

Classification for carpet KL-517

Cosmin COPOŢ – “Gheorghe Asachi” Tehnical University of Iasi

ICCP’09, Cluj Napoca, August 27-29, 2009

Conclusion ¾ Automated carpet classification can be achieved using co-occurrence matrix, PCA and SVM ¾ Polynomial kernel gives 88,32% over all classification ¾ Gaussian kernel gives 94,24% over all classification

Cosmin COPOŢ – “Gheorghe Asachi” Tehnical University of Iasi

ICCP’09, Cluj Napoca, August 27-29, 2009

THANK YOU!

Cosmin COPOŢ – “Gheorghe Asachi” Tehnical University of Iasi