surface parameterization using Riemann Surface Structure

6 downloads 0 Views 2MB Size Report
Cortical Surface extraction with Freesurfer. 2. ... Connectome-based cortical surface registration ... information with cortical surface anatomy for a joint.
rm itt ed

rC re at iv

e

C o

un de r

P se U

o m om

un de

C

Pe rm itt e

at

d

iv e

se

Boris A. Gutman, Neda Jahanshad, Derek Hibar, Cassandra Leonardo, Kristian Eschenburg, Talia Nir, Julio Villalon-Reina, Paul M. Thompson

:U

10 00

Po

Pe

st er s:

Continuous Connectomics: An Exploratory Framework for Connectivity Analysis in Brain Imaging

m

ed

MRI tractography. Medical Image Analysis 15, 414-425 (2011) [2] Gutman, B.A., et al.: A Family of Fast Spherical Registration Algorithms for Cortical Shapes. Multimodal Brain Image Analysis (MBIA) (2013)

de r m Pe r Po

. Li ce ns e

on s

m

om

un d

[1]. Aganj, I., et al.: A Hough transform global probabilistic approach to multiple-subject diffusion

:U se

un

om

C

re at iv

𝒅𝒚𝒅𝒛.

C

rm

𝟏/𝟑

C

References

𝓒

𝑲(𝒙, 𝒚)𝑲(𝒙, 𝒛)𝑲(𝒚, 𝒛)

Pe

where 𝒕 𝒙 =

𝒅𝒚

,

er

ed

itt

s:

𝒚∈𝜴 𝑲 𝒙,𝒚 >𝟎

We have presented a framework for fusing connectivity information with cortical surface anatomy for a joint connectivity analysis. There are four distinct contributions: (1) the definition of a continuous connectome space and a method for estimating continuous kernels from fiber models; (2) an algorithm for defining a mutual connectome shared by two brains; (3) a spatial correspondence search between two connectome kernels, directly registering the brains’ structural connectivities; (4) an adaptation of graph theory measures to the continuous setting.

e

un

se

U

• Continuous Clustering Coefficient:

𝟐

se

Li on s Conclusion

• Continuous Nodal degree (connectedness): 𝒌 𝒙 = 𝜴 𝑲(𝒙, 𝒚)𝒅𝒚 = 𝑲 𝒙, 𝒙 𝟐𝒕 𝒙

Corrected p-maps for AD-NC difference in (A) clustering coefficient , (B) connectedness, a.k.a. continuous nodal degree

m

de rC

Pe rm

5. Continuous Connectomics

𝑪 𝒙 =

ce ns e.

C

e

𝒅𝒙.

tiv

𝒇𝒙

re a

𝒙 −

er s:

on s

m om

C

er

un d

∈ 𝑬𝑴

𝒘𝒌

itt

ed

𝜴

𝒆𝟏𝒊 ,𝒆𝟐𝒋 ,𝒘𝒌 𝒌 𝒌

𝟐

F1 00 0

e

re at iv

d

te

4. Connectome-based cortical surface registration

𝟐 𝒆𝒋 𝒌

st

Li ce ns e

om

C

de r

un

Both measures passed False Discovery Rate (FDR) correction. Connectedness: q = 1.0x10-3 for the right -3 hemisphere, and q = 1.9x10 for the left. Clustering -3 coefficient: q = 1.7x10 for the right hemisphere and q = 2.5x10-5 for the left.

𝒌

• Registering connectomes reduces to multi-channel registration:

Individual improvement 0.098 +/-0.089 0.2 +/-0.089

4. Sensitivity of continuous connectomics to Alzheimer’s Disease

tiv e

C re

• By projecting networks of one person’s brain into appropriate eigenspaces of another we can match networks between individual brains. 𝟏 𝟐 Mutual network set: 𝑬𝑴 = 𝒆𝒊𝒌 , 𝒆𝒋 , 𝒘𝒌

Anatomy + connectivity 0.43 +/-0.12 0.12 +/-0.099

st e

Full kernel Mutual kernel

on s

at iv

e

• Eigenfuncions of the connectome kernel (eigennetworks) fully describe the connectome per Mercer’s Theorem: 𝑲 𝒙, 𝒚 = 𝒊 𝝀𝒊 𝒆𝒊 𝒙 𝒆𝒊 𝒚

Po

Li c

3. Eigen-network matching

Anatomy only 0.528 +/-0.101 0.32 +/-0.082

10 00

.

U

F1 00

• Spherical fluid framework [2] • Connectome mismatch reduced compared to purely anatomical registration:

en se .

on s

m

C om

3. Connectome registration

𝟏=𝒊≤𝑵𝒇𝒊𝒃𝒆𝒓𝒔

𝟏 𝒆𝒊𝒌

rm itt ed se

Po st er

0

Li

e

iv

𝑲 𝒙, 𝒚 =

𝒊 𝑮𝝈 𝒑𝟐 , 𝒚

Pe

st e

e. F

ce ns

C om

2. Matched eigen-networks (right)

• Treat each fiber as an obseravtion in a connectome space • Use kernel density estimation to compute a continuous connectivity profile for each brain:

𝐂 𝑬𝑴 , 𝒇 =

B

s: U

m on s

Pre-processing

• Tractogaphy with Hough Transform [1] • Cortical Surface extraction with Freesurfer

ea t

Po

Method

10 00

Li

ce ns

e. F

• Current connectivity analysis assumes a small discrete graph – not flexible enough for connectome matching

𝒊 𝑮𝝈 𝒙, 𝒑𝟏

C r

rm Pe

se

U rs :

Li

ns

1. Visualizing individual fiber model contribution to the continuous connectome

10 00

ce

• Matching connectivity profiles across brains may therefore improve brain surface registration

2. Continuous Connectome

er C re

ed

itt

Po st er s:

Results

.F

ns e. F1 00 0

• Structural connectivity may be a better indicator of functional role of brain regions than gross anatomy alone

1.

Data

ADNI 2 dataset: 64-direction DTI images & T1-weighed images for cortical surface extraction. 48 Alzheimer’s patients. 50 age-matched controls.

U se

Po

Motivation: matching connectomes across different brains

un d

st er s

Imaging Genetics Center, Institute for Neuroimaging & Informatics, University of Southern California, Los Angeles, CA, USA.

Suggest Documents