Effect of Basketweave Microstructure on Very High Cycle ... - MDPI

2 downloads 0 Views 3MB Size Report
May 30, 2018 - along the α lamella at the subsurface crack initiation site. ... The colony of α lamella is due to the local stress concentrated between them.
metals Article

Effect of Basketweave Microstructure on Very High Cycle Fatigue Behavior of TC21 Titanium Alloy Baohua Nie 1 , Zihua Zhao 2, *, Dongchu Chen 1 , Shu Liu 1 , Minsha Lu 1 , Jianglong Zhang 2 and Fangming Liang 1 1

2

*

School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China; [email protected] (B.N.); [email protected] (D.C.); [email protected] (S.L.); [email protected] (M.L.); [email protected] (F.L.) School of Materials Science and Engineering, Beihang University, Beijing 100191, China; [email protected] Correspondence: [email protected]; Tel.: +86-010-8231-3264

Received: 1 May 2018; Accepted: 29 May 2018; Published: 30 May 2018

 

Abstract: This paper discusses the effect of basketweave microstructure on the very high cycle fatigue behavior of TC21 titanium alloy. Ultrasonic fatigue tests at 20 kHz are done on a very high cycle fatigue (VHCF) property of the alloys with 60 µm and 40 µm basketweave size, respectively. Results show that the alloys illustrate step-wise S-N characteristics over the 105 –109 cycle regimes and that fatigue fracture in both of the alloys occur beyond the conventional fatigue limit of 107 cycles. Subsurface crack initiation occurs at low stress amplitude. A fine granular area (FGA) is observed along the α lamella at the subsurface crack initiation site. The mechanism for the subsurface crack initiation is revealed using layer-by-layer-polishing, due to the micro-voids that are introduced at the granular α phase. The colony of α lamella is due to the local stress concentrated between them under the cyclic load. The stress intensity factor range at the FGA front is regarded as the threshold value controlling the internal crack propagation. Furthermore, the effect of the baseketweave size on the very high cycle fatigue limits of the TC21 titanium alloy is evaluated based on the Murakami model, which is consistent with the experimental results. The fatigue life of TC21 titanium alloy is well predicted using the energy-based crack nucleation life model. Keywords: very high cycle fatigue; crack initiation; titanium alloy; basketweave microstructure

1. Introduction High strength titanium alloys are usually used in aeronautical force-bearing components as a result of their high specific strength and excellent corrosion properties [1]. Throughout their ultra-long time service, the components are subjected to cyclic load with high frequency and low amplitude, thus the very high cycle fatigue (VHCF) of titanium alloy has been drawing world wide attention [2,3]. Fatigue failure in high strength titanium alloys occurs beyond the conventional fatigue limit of 107 cycles, and the stress-number of cycles to failure (S-N) curves exhibit a step-wise shape [2] or a decreasing shape [4]. Another important characteristic of these titanium alloys is that the crack initiation site shifts from the surface-induced fracture at low cycle regimes to a subsurface-induced fracture at very high cycle regimes [5], which may be responsible for the variability of the fatigue properties and the step-wise shape of the S-N curve. Thus, it is hazardous to design aeronautical components based on conventional fatigue strength data. Obviously, the microstructure of the titanium alloys significantly affects the fatigue properties and the fatigue crack initiation mechanisms in a very high cycle regime. As for titanium alloys with a bimodal microstructure, α grain size [6–8], grain distribution [9], crystal orientation [10,11], and

Metals 2018, 8, 401; doi:10.3390/met8060401

www.mdpi.com/journal/metals

Metals 2018, 8, 401

2 of 11

super grain (grain clusters with similar orientation) [12] are important factors of the fatigue crack initiation for titanium alloys. The mechanism of the fine granular area (FGA) was supposed to be the cleavage of primary α grains, followed by the growth and coalescence of the adjacent facets [5,13,14]. The probabilities of faceted crack initiation increase with the value of the stress ratio R (the ratio of the min stress to the max stress), and the rough area, other than the facets characteristics, were observed at the stress ratio of −1 [13]. The formation of a rough area at the ratio of −1 was explained based on the numerous cyclic pressing (NCP) model [14]. However, till now the fracture mechanism and fatigue properties in a very high cycle regime for the titanium alloys basketweave microstructure has not been very well understood. V. Crupi et al. [15] investigated the very high cycle fatigue behavior of Ti6Al4V alloy with both bimodal and lamellar microstructures. The alloy with lamellar microstructure had fatigue strength lower than that with bimodal microstructure, and the crack initiated from the surface without subsurface facets. The investigation by Zuo et al. [5] indicated a very high cycle fatigue crack initiated from α/β interfaces in Ti6Al4V with lamellar microstructure due to the dislocation arrays pile-up at α/β interfaces, where the crack initiation site displayed flat facet characteristics. It is noted that α/β lamellar played an important role in the very high cycle fatigue crack initiation, but the effect of granular α phase, which is a typical microstructure at the grain boundary, has been ignored. TC21 alloy is an α + β titanium alloy usually used in aeronautical force-bearing components due to its fatigue damage tolerance, excellent welding, and formation performance [1]. The VHCF behavior of TC21 titanium alloy with basketweave microstrucutrue was investigated in the present work. A fatigue crack initiation mechanism is revealed using the layer-by-layer-polishing approach to observe the microstructure as well as the defects underneath the crack initiation site. The effect of basketweave on fatigue strength and initiation life is quantitatively estimated based on the fatigue fracture theory. 2. Experimental Procedures 2.1. Materials The material used in this study was TC21 titanium alloy with a nominal chemical composition of Ti-6Al-2Sn-2Zr-3Mo-1Cr-2Nb. The alloy was forged at 940 ◦ C with deformation ratio up to 50%, 80%, air quenching, following as 900 ◦ C for 2 h + air quenching, and then 600 ◦ C for 4 h + air quenching. The thermo-mechanical treatment procedures had basketweave microstrucrture with the mean sizes of 60 and 40 µm, and the granular α phase was observed in both samples (Figure 1a,b). Furthermore, a double lamellar basketweave microstructure, where secondary α lamella was present in β lamella, can be observed in the alloys, as shown in Figure 1c. The alloys with the basekweave size of 60 and 40 µm obtained a high tensile strength of 1070 MPa, 1100 MPa, respectively.

Metals 2018, 8, 401

3 of 11

Metals 2018, 8, x FOR PEER REVIEW   

3 of 11 

 

(b) 

(a) 

 

  (c)  Figure 1. Basketweave microstructures of TC21 titanium alloy: (a) basketweave size of 60 μm (OM);  Figure 1. Basketweave microstructures of TC21 titanium alloy: (a) basketweave size of 60 µm (OM); (b) basketweave size of 40 μm (OM) and (c) a double lamellar basketweave microstructure (SEM).  (b) basketweave size of 40 µm (OM) and (c) a double lamellar basketweave microstructure (SEM).

2.2. Surface Treatment  2.2. Surface Treatment The specimens underwent electro‐polishing (EP) to remove the machining layers to observe the  The specimens underwent electro-polishing (EP) to remove the machining layers to observe the fatigue damage morphology and eliminate its influence on fatigue behavior. Electro‐polishing was  fatigue damage morphology and eliminate its influence on fatigue behavior. Electro-polishing was  carried out in 59% methanol, 35% n‐butanol, 6% perchloric acid under −20 °C, and 20–25 V voltage.  carried out in 59% methanol, 35% n-butanol, 6% perchloric acid under −20 ◦ C, and 20–25 V voltage. 2.3. Ultrasonic Fatigue Test  2.3. Ultrasonic Fatigue Test Fatigue tests were carried out using an ultrasonic fatigue test machine (20 kHz, SHIMADZU,  Fatigue tests were carried out using an ultrasonic fatigue test machine (20 kHz, SHIMADZU, Kyoto, Japan) at a constant stress ratio of −1. This method is an accelerated testing method with a  Kyoto, Japan) at a constant stress ratio of −1. This method is an accelerated testing method with a frequency far beyond that of the conventional fatigue experiments. The frequency effect is small for  frequency far beyond that of the conventional fatigue experiments. The frequency effect is small for ultrasonic fatigue tests under low displacement and small deformation [16]. Very high cycle fatigue  ultrasonic fatigue tests under low displacement and small deformation [16]. Very high cycle fatigue behaviors of many metallic materials have been investigated using an ultrasonic fatigue test machine,  behaviors of many metallic materials have been investigated using an ultrasonic fatigue test machine, which includes an ultrasonic generator, a piezoelectric converter, an ultrasonic horn, and a computer  which includes an ultrasonic generator, a piezoelectric converter, an ultrasonic horn, and a computer control system [17]. An ultrasonic generator transforms 50 or 60 Hz voltage signals into sinusoidal  control Ana ultrasonic generator transforms 50 or 60generator  Hz voltage signals into sinusoidal signals  system with  20 [17]. kHz;  piezoelectric  converter  excited  by  the  transforms  the  electrical  signals with 20 kHz; a piezoelectric converter excited by the generator transforms the electrical signal  into  a  longitudinal  mechanical  vibration  with  the  same  frequency;  an  ultrasonic signal horn  into a longitudinal mechanical vibration with the same frequency; an ultrasonic horn amplifies the amplifies the vibration displacement in order to obtain the required strain amplitude in the middle  vibration displacement in order to obtain the required strain amplitude in the middle section of the section of the specimen; a computer control system is necessary to control the load amplitude and  specimen; computer control system displacement  is necessary to control the load amplitude and acquire the acquire  the a test  data.  The  maximum  amplitude  measured  by  a  dynamic  sensor  is  test data. The maximum displacement amplitude measured by a dynamic sensor is obtained at the obtained at the end of the specimen while the strain excitation in the push‐pull cycles (load ratio R =  −1) reaches the maximum in the middle section of the specimen, which produces the required high   

Metals 2018, 8, 401

4 of 11

Metals 2018, 8, x FOR PEER REVIEW  4 of 11  end of the specimen while the  strain excitation in the push-pull cycles (load ratio R = −1) reaches the maximum in the middle section of the specimen, which produces the required high frequency frequency  fatigue  stress.  In  addition,  a air compressed  cooling  gun  is  necessary  to  prevent  the  fatigue stress. In addition, a compressed cooling gunair  is necessary to prevent the temperature from temperature from increasing during the tests.  increasing during the tests. Considering that that the the  amplifier  the  specimen  must atwork  at  resonance,  the  specimen  Considering amplifier andand  the specimen must work resonance, the specimen geometry geometry was designed using the elastic wave theory. Figure 2 shows the geometries of the fatigue  was designed using the elastic wave theory. Figure 2 shows the geometries of the fatigue specimens specimens and its dimensions.    and its dimensions.

  Figure 2. Shape and dimensions of the test specimens (unit: mm).  Figure 2. Shape and dimensions of the test specimens (unit: mm).

2.4. Observation of Microstructure at the Crack Initiation Site  2.4. Observation of Microstructure at the Crack Initiation Site In  order order  to to investigate investigate  the the  fatigue fatigue  crack crack  initiation initiation  mechanism mechanism  of  TC21  titanium titanium  alloy, alloy,  the the  In of the  the TC21 microstructure characteristic at crack initiation site was observed. As for the surface crack initiation, the  microstructure characteristic at crack initiation site was observed. As for the surface crack initiation, fracture surface was protected by the resin, then the side of the crack initiation site was etched. The resin  the fracture surface was protected by the resin, then the side of the crack initiation site was etched. was resin removed  by  the  acetone  and  the and microstructure  characteristic  of  the of surface  crack crack origin  was  The was removed by the acetone the microstructure characteristic the surface origin observed  by  the  tilt  function  of  the  scanning  electron  microscope  (Hitachi  Limited,  Tokyo,  Japan)  for  was observed by the tilt function of the scanning electron microscope (Hitachi Limited, Tokyo, Japan) subsurface crack initiation specimens, the fatigue fracture was embedded with the resin, and the exact  for subsurface crack initiation specimens, the fatigue fracture was embedded with the resin, and the location  of  the ofcrack  initiation  site  was  by  the  method.  The The microstructure  at  the  exact location the crack initiation site marked  was marked by coordinate  the coordinate method. microstructure at subsurface crack initiation site was observed using the layer‐by‐layer polishing method.  the subsurface crack initiation site was observed using the layer-by-layer polishing method. 3. Results and Discussion  3. Results and Discussion 3.1. S-N Characteristics   3.1. S‐N Characteristics  9 Step-wise characteristics can be observed on the S-N curve over the wide range of the 1055–10 Step‐wise characteristics can be observed on the S‐N curve over the wide range of the 10 –109  cycle regimes for the TC21 titanium alloy with two sizes of basketweave (Figure 3). Fatigue fracture cycle regimes for the TC21 titanium alloy with two sizes of basketweave (Figure 3). Fatigue fracture  in both alloys occurs beyond the conventional fatigue limit of 1077 cycles but present very high cycle  cycles but present very high cycle in both alloys occurs beyond the conventional fatigue limit of 10 fatigue limits with 530 and 430 MPa, respectively. Step-wise characteristics can be also observed in the fatigue limits with 530 and 430 MPa, respectively. Step‐wise characteristics can be also observed in  VHCF of the TC4 titanium alloy with bimodal microstructure [18], however, the research by Zuo [5] the VHCF of the TC4 titanium alloy with bimodal microstructure [18], however, the research by Zuo  has shown that the the S-N curve of Ti6Al4V with basketweave decreased continuously and turns [5] has shown that the the S‐N curve of Ti6Al4V with basketweave decreased continuously and turns  less sharply at about 5 × 1077 cycles, and there exists no horizontal asymptote and fatigue limit, which  cycles, and there exists no horizontal asymptote and fatigue limit, which less sharply at about 5 × 10 could result from the different basketweave sizes. Figure 3 also shows fatigue properties of the alloy could result from the different basketweave sizes. Figure 3 also shows fatigue properties of the alloy  with basketweave of 40 µm are higher than thatthat  of 60of  µm, these these  two specimens have a similar with  basketweave  of  40  μm  are  higher  than  60  although μm,  although  two  specimens  have  a  tensile strength. It is can be attributed to the shorter effective slip length for the specimens with fine similar tensile strength. It is can be attributed to the shorter effective slip length for the specimens  basketweave [19]. with fine basketweave [19].    The step-wise characteristics can be the results of the shift of crack initiation mechanism. Based on The step‐wise characteristics can be the results of the shift of crack initiation mechanism. Based  SEM observation of all fracture surfaces, for both kinds of alloys, the fatigue cracks initiate from the on SEM observation of all fracture surfaces, for both kinds of alloys, the fatigue cracks initiate from  sample’s surface at relatively high stress amplitudes, whereas the crack initiation mode shifts to the the sample’s surface at relatively high stress amplitudes, whereas the crack initiation mode shifts to  subsurface with a fine granular area (FGA) initiation model at approximately 600 and 540 MPa over the the subsurface with a fine granular area (FGA) initiation model at approximately 600 and 540 MPa  5 to 10 7 cycle regimes. The crack initiation mechanisms for the surface and  wide range of 105 to 107 cycle regimes. The crack initiation mechanisms for the surface and subsurface over the wide range of 10 initiation models are discussed below. subsurface initiation models are discussed below.   

 

Metals 2018, 8, 401 Metals 2018, 8, x FOR PEER REVIEW    Metals 2018, 8, x FOR PEER REVIEW   

5 of 11 5 of 11  5 of 11 

  Figure 3. S‐N curve of TC21 titanium alloy with two sizes of basketweave.  Figure 3. S‐N curve of TC21 titanium alloy with two sizes of basketweave.  Figure 3. S-N curve of TC21 titanium alloy with two sizes of basketweave.

3.2. Fatigue Crack Initiation Analysis 

3.2. Fatigue Crack Initiation Analysis  The typical surfaces initiation of the TC21 titanium alloy with basketweave of 60 μm and 40 μm  3.2. Fatigue Crack Initiation Analysis are shown in Figure 4. Fatigue crack is initiated from the sample surface under high stress amplitude  The typical surfaces initiation of the TC21 titanium alloy with basketweave of 60 μm and 40 μm  The typical surfaces initiation of the TC21 titanium alloy with basketweave of 60 µm and and  a  radial  ridge  pattern  parallel  to  the  crack  propagation  direction  is  observed  on  the  fracture  are shown in Figure 4. Fatigue crack is initiated from the sample surface under high stress amplitude  40 µm are shown in Figure 4. Fatigue crack is initiated from the sample surface under high stress surface.  However,  under  low  stress  amplitude direction  initiates  from  the  sample  subsurface  and  a  radial  ridge  fatigue  pattern crack  parallel  to  the  crack  propagation  is  observed  on  the  fracture  amplitude and a radial ridge pattern parallel to the crack propagation direction is observed on (Figures 5 and 6). α/β lamellar characteristics are present at the crack initiation site where the fine  surface.  However,  fatigue  crack  under  low  stress  amplitude  initiates  from  the  sample  subsurface  the fracture surface. However, fatigue crack under low stress amplitude initiates from the sample granular is distributed on α lamella and FGA has the same size as the colony of lamella (Figure 5).  (Figures 5 and 6). α/β lamellar characteristics are present at the crack initiation site where the fine  subsurface (Figures 5 and 6). α/β lamellar characteristics are present at the crack initiation site where The similar rough area characteristic at the crack initiation site is often observed in bidomal equiaxed  granular is distributed on α lamella and FGA has the same size as the colony of lamella (Figure 5).  the fine granular is distributed on α lamella and FGA has the same size as the colony of lamella microstructure at R = −1, which was explained based on the numerous cyclic pressing (NCP) model  The similar rough area characteristic at the crack initiation site is often observed in bidomal equiaxed  (Figure 5). The similar rough area characteristic at the crack initiation site is often observed in bidomal [14]. The probability of rough area at the crack initiation site is decreased with the increase of the  microstructure at R = −1, which was explained based on the numerous cyclic pressing (NCP) model  equiaxed microstructure at R = −1, which was explained based on the numerous cyclic pressing (NCP) stress ratio of −1 [13]. As for TC21 titanium alloy with basketweave of 40 μm, the fracture surfaces  [14]. The probability of rough area at the crack initiation site is decreased with the increase of the  model [14]. The probability of rough area at the crack initiation site is decreased with the increase of are  similar  to  that  of  the  alloy  with  basketweave  of  60  μm.  Fatigue  crack  initiates  shifts  from  the  stress ratio of −1 [13]. As for TC21 titanium alloy with basketweave of 40 μm, the fracture surfaces  the stress ratio of −1 [13]. As for TC21 titanium alloy with basketweave of 40 µm, the fracture surfaces sample  surface  to  the  subsurface  under  a  low  stress  amplitude  (Figure  6),  however,  α/β  lamella  are  similar  to  that  of  the  alloy  with  basketweave  of  60  μm.  Fatigue  crack  initiates  shifts  from  the  are similar to that of the alloy with basketweave of 60 µm. Fatigue crack initiates shifts from the sample characteristics are insignificant at the crack initiation site probably because of the small size of the  sample  surface  to  the  subsurface  under  a  low  stress  amplitude  (Figure  6),  however,  α/β  lamella  surface to the subsurface under a low stress amplitude (Figure 6), however, α/β lamella characteristics α/β lamella.    characteristics are insignificant at the crack initiation site probably because of the small size of the  are insignificant at the crack initiation site probably because of the small size of the α/β lamella. α/β lamella.   

  (a)  (a) 

  (b)  (b) 

Figure 4. Fatigue fracture surface of TC21 titanium alloy: (a) basketweave of 60 μm at σ = 550 MPa, N  Figure 4. Fatigue fracture surface of TC21 titanium alloy: (a) basketweave of 60 µm at σ = 550 MPa, Figure 4. Fatigue fracture surface of TC21 titanium alloy: (a) basketweave of 60 μm at σ = 550 MPa, N  6 cycles.  = 2.37 × 105 cycles; (b) basketweave of 40 μm at σ = 610 MPa, N = 1.15 × 10 6 cycles.  N = 2.37 ×5 cycles; (b) basketweave of 40 μm at σ = 610 MPa, N = 1.15 × 10 105 cycles; (b) basketweave of 40 µm at σ = 610 MPa, N = 1.15 × 106 cycles. = 2.37 × 10

 

Metals 2018, 8, 401

6 of 11

Metals 2018, 8, x FOR PEER REVIEW     Metals 2018, 8, x FOR PEER REVIEW 

6 of 11  6 of 11 

(a)  (a) 

  

(b)  (b) 

  

Figure 5. Fatigue fracture surface of TC21 titanium alloy with basketweave of 60 µm at σ = 500 MPa, Figure 5. Fatigue fracture surface of TC21 titanium alloy with basketweave of 60 μm at σ = 500 MPa,  Figure 5. Fatigue fracture surface of TC21 titanium alloy with basketweave of 60 μm at σ = 500 MPa,  6 cycles: (a) fatigue crack initiation site; (b) high magnification morphology. N = 6.66 × 1066 cycles: (a) fatigue crack initiation site; (b) high magnification morphology.  N = 6.66 × 10  cycles: (a) fatigue crack initiation site; (b) high magnification morphology.     N = 6.66 × 10

  

(a)   (a)

  

(b)   (b)

  

Figure 6. Fatigue fracture surface of TC21 titanium alloy with basketweave of 40 μm at σ = 540 MPa,  Figure 6. Fatigue fracture surface of TC21 titanium alloy with basketweave of 40 μm at σ = 540 MPa,  Figure 6. Fatigue fracture surface of TC21 titanium alloy with basketweave of 40 µm at σ = 540 MPa, N = 8.51 × 1077cycles: (a) fatigue crack initiation site; (b) high magnification morphology.  cycles: (a) fatigue crack initiation site; (b) high magnification morphology.  N = 8.51 × 10 N = 8.51 × 107 cycles: (a) fatigue crack initiation site; (b) high magnification morphology.

The microstructure of the surface crack initiation site can be observed by SEM due to the surface  The microstructure of the surface crack initiation site can be observed by SEM due to the surface  The microstructure of the surface initiation site can be observed by SEM dueinitiates  to the surface electro‐polishing  treatment  shown  in crack Figure  7.  It  It  is  is  obvious  obvious  that  the  surface  surface  crack  at  α/β  α/β  electro‐polishing  treatment  shown  in  Figure  7.  that  the  crack  initiates  at  electro-polishing treatment shown in Figure 7. It is obvious that the surface crack initiates at α/β interface at a high stress amplitude. The priority deformation of α phase occurs under cyclic load,  interface at a high stress amplitude. The priority deformation of α phase occurs under cyclic load,  interface at a high stress amplitude.at The deformation of α phase occurs load, and and  the  the  dislocation  dislocation  concentrates  the priority α/β  interface  interface  producing  severe  local under stress cyclic concentration.  and  concentrates  at  the  α/β  producing  severe  local  stress  concentration.  the dislocation concentrates at the α/β interface producing severe local stress concentration. Thus, Thus, α/β interface becomes preferential crack initiation sites in a high cycle regime, even in a very  Thus, α/β interface becomes preferential crack initiation sites in a high cycle regime, even in a very  α/β interface becomes  preferential crack initiation sites in a high cycle regime, even in a very high high cycle regime [15].  high cycle regime [15].    cycleFGA is present at the subsurface initiation site for the TC21 alloy, which has no inclusions or  regime [15]. FGA is present at the subsurface initiation site for the TC21 alloy, which has no inclusions or  FGA is present at the subsurface initiation site for the TC21 alloy, which has no inclusions or porosities. The subsurface initiation of cracks is associated with the microstructural inhomogeneity.  porosities. The subsurface initiation of cracks is associated with the microstructural inhomogeneity.  porosities. The subsurface of cracks associated with the microstructural The  microstructure  microstructure  at  the  the initiation subsurface  crack isinitiation  initiation  site  is  observed  observed  using  the  the inhomogeneity. layer‐by‐layer  The  at  subsurface  crack  site  is  using  layer‐by‐layer  The microstructure at the subsurface crack initiation site is observed using the layer-by-layer polishing polishing method. Observation of the subsurface microstructure shows that some micro‐voids are  polishing method. Observation of the subsurface microstructure shows that some micro‐voids are  method. Observation of the subsurface microstructure shows that some micro-voids are distributed in distributed in α lamella in the vicinity of the coarse granular α phase (Figure 7). It is speculated that  distributed in α lamella in the vicinity of the coarse granular α phase (Figure 7). It is speculated that  α lamella in the vicinity of the coarse granular α phase (Figure 7). It is speculated that nanocracks can nanocracks can propagate by linkage with the micro‐voids in front of the crack tip by cyclic loading  nanocracks can propagate by linkage with the micro‐voids in front of the crack tip by cyclic loading  propagate by linkage with the micro-voids in front of the crack tip by cyclic loading without much without much plasticity [20]. Taking Figure 6 as an example, the FGA radius is approximately 42 μm  without much plasticity [20]. Taking Figure 6 as an example, the FGA radius is approximately 42 μm  plasticity [20]. Taking Figure 6 as an example, the FGA radius is approximately 42 µm under 8.51 × 107 7 loading cycles. Considering that most of the fatigue life is spent in the FGA crack  under 8.51 × 10 7 loading cycles. Considering that most of the fatigue life is spent in the FGA crack  under 8.51 × 10 loading cycles. Considering that most of the fatigue life is spent in the FGA crack propagation [21,22], −13 m/cycle, which  propagation [21,22], the average fatigue crack growth rate is approximately 4.9 × 10 −13 m/cycle, which  propagation [21,22], the average fatigue crack growth rate is approximately 4.9 × 10   

Metals 2018, 8, 401

7 of 11

Metals 2018, 8, x FOR PEER REVIEW   

7 of 11 

the average fatigue crack growth rate is approximately 4.9 × 10−13 m/cycle, which is lower than the is  lower  than  the  lattice  spacing  and  thereby  indicates  that  the  fatigue  crack  cannot  propagate  lattice spacing and thereby indicates that the fatigue crack cannot propagate cycle-by-cycle. cycle‐by‐cycle.    Figure 7 suggests that the micro-plasticity damage occurs due to the local microstructural Figure  7  suggests  that  the  micro‐plasticity  damage  occurs  due  to  the  local  microstructural  inhomogeneity. As a result of the severe local stress concentrated at the interface between the granular inhomogeneity.  As  a  result  of  the  severe  local  stress  concentrated  at  the  interface  between  the  α phase and the colony of α/β lamellae under cyclic load, a microcrack is formed in the granular granular α phase and the  colony  of  α/β lamellae  under cyclic load, a microcrack is formed in the  α phase due to priority deformation, and nanograin layers at the microcrack wake are produced granular  α  phase  due  to  priority  deformation,  and  nanograin  layers  at  the  microcrack  wake  are  by the repeated pressing between the crack surfaces along the α lamella [14]. Micro-voids can be produced by the repeated pressing between the crack surfaces along the α lamella [14]. Micro‐voids  introduced at the nanograin boundary, then the coalescence and linkage of the micro-voids results in can be introduced at the nanograin boundary, then the coalescence and linkage of the micro‐voids  the separation of the nanograin layer, which displays FGA characteristics. The crack initiation at α results  in  the  separation  of  the  nanograin  layer,  which  displays  FGA  characteristics.  The  crack  lamella is also reported in very high cycle fatigue of Ti6Al4V, however, the flat facets were displayed initiation at α lamella is also reported in very high cycle fatigue of Ti6Al4V, however, the flat facets  on the lamella [5], which may be owing to the absence of the granular α phase in the alloy. The α/β were displayed on the lamella [5], which may be owing to the absence of the granular α phase in the  lamellae interface is the weak link for crack initiation, causing a cleavage on the plane with a favorable alloy. The α/β lamellae interface is the weak link for crack initiation, causing a cleavage on the plane  orientation because of the restricted operative slip systems. with a favorable orientation because of the restricted operative slip systems.   

(a) 

(b) 

Figure 7. Fatigue crack initiation and microstructure characteristics with basketweave of 40 µm: Figure 7. Fatigue crack initiation and microstructure characteristics with basketweave of 40 μm: (a)  (a) surface initiation, σ = 610 MPa, N = 1.15 × 106 cycles; (b) subsurface initiation, σ = 540 MPa, 6 cycles; (b) subsurface initiation, σ = 540 MPa, N = 8.51 ×  surface initiation, σ = 610 MPa, N = 1.15 × 10 7 N= 8.51 × 10 cycles. 107 cycles. 

3.3. Effect of Basketweave on Fatigue Fracture Mechanism   3.3. Effect of Basketweave on Fatigue Fracture Mechanism  For the subsurface fracture model, the initial stress intensity factor range at the FGA front can be For the subsurface fracture model, the initial stress intensity factor range at the FGA front can  calculated using the Murakami model [23]: be calculated using the Murakami model [23]:  ∆KFGA = 0.5σa

q √ π areaFGA

(1) (1)  where σa is the stress amplitude and areaFGA is the area of FGA at the crack origin. In ultrasonic fatigue where  σa  is  the  area FGA  is  area part of  FGA  at cycle the  crack  In  ultrasonic  with a mean loadstress  equalamplitude  to zero (Rand  = −1), only thethe  tensile of the has aorigin.  predominant effect fatigue with a mean load equal to zero (R = −1), only the tensile part of the cycle has a predominant  on the fatigue crack propagation [24]. Thus, ∆KFGA is calculated by substituting σa into Equation (1) effect  on  instead of the  ∆σ. fatigue  crack  propagation  [24].  Thus,  ΔKFGA  is  calculated  by  substituting  σa  into  Equation (1) instead of Δσ.    the stress intensity factor range at FGA and fatigue life is shown in The relationship between The relationship between the stress intensity factor range at FGA and fatigue life is shown in  Figure 8. The alloy with basketweave of 60 µm and 40 µm have the same of ∆KFGA value, which has  value, which has a  aFigure 8. The alloy with basketweave of 60 μm and 40 μm have the same of ΔK scattering zone ranging from 3.8 MPa·m1/2 to 4.5 MPa·m1/2 (Figure 8), andFGA can be considered as 1/2 to 4.5 MPa∙m1/2 (Figure 8), and can be considered as the  scattering zone ranging from 3.8 MPa∙m the threshold for the crack growth ∆Kth [24]. Zhao et al. [25] supposed that the growth of FGA was threshold by for the the  crack  microstructure, growth  ΔKth  [24].  et  al. crack [25]  cannot supposed  that  the when growth  FGA zone was  restricted related andZhao  the FGA propagate the of  plastic restricted by the related microstructure, and the FGA crack cannot propagate when the plastic zone  size ahead of the FGA crack tip is equal to the characteristic dimension of the materials. Thus, the  value of ΔKFGA can be evaluated as [26]: 

K FGA  0.5 a  area FGA

Metals 2018, 8, 401

8 of 11

Metals 2018, 8, x FOR PEER REVIEW    8 of 11  size ahead of the FGA crack tip is equal to the characteristic dimension of the materials. Thus, the value of ∆KFGA can be evaluated as [26]:

K FGA  4.342 √ b  

(2)  (2) ∆KFGA = 4.342µ b Equation (2) implies that ΔKFGA is a function of the shear modulus μ and the Burgers vector b of  Equation (2) implies that ∆KFGA is a function of the shear modulus µ and1/2the Burgers vector b of materials. According to Equation (2), the value of ΔK FGA is about 3.54 MPa∙m  for TC21 alloy, which  1/2 for TC21 alloy, which materials. According to Equation (2), the value of ∆K is about 3.54 MPa · m 1/2 FGA is  consistent with  various experimental  results  of 3.4–4.0 MPa∙m   [26,27],  but  slightly  lower  than  1/2 [26,27], but slightly lower than this is consistent with various this experiment data.    experimental results of 3.4–4.0 MPa·m experiment As  for data. subsurface  crack  initiation,  FGA  is  found  along  the  basketweave  (Figures  5  and  6),  As for subsurface crack initiation, FGA is found along the basketweave (Figures 5 and 6), indicating the significant effect of basketweave on the hindering of FGA. Chapetti [28] assumed that  indicating themicrostructure  significant effect ofthe  basketweave the hindering of FGA. Chapetti [28] assumed the  strongest  was  barrier  for on fatigue  crack  propagation  at  the  critical  nominal  that the strongest microstructure was the barrier for fatigue crack propagation at the critical nominal stress  range  needed  for  a  continued  crack  growth  (microstructural  threshold).  Fatigue  crack  is  stress range needed for a continued crack growth (microstructural threshold). Fatigue crack is assumed assumed to be hindered at the first basketweave under very high cycle fatigue limit stress; the FGA  to be hindered at the first basketweave under very high cycle fatigue limit stress; the FGA area can be area can be treated as a circular area with a radius equal to basketweave. From Equation (1), a very  treated as a circular area with a radius equal to basketweave. From Equation (1), a very high cycle high cycle fatigue limit of titanium alloy with basketweave microstructure can be expressed as  fatigue limit of titanium alloy with basketweave microstructure can be expressed as

2ΔK FGA 2ΔK th σ a = 2∆KFGA =   2∆Kth p √area σa = p √ area = π area α/β π area FGA FGA

(3)  (3)

α/β

1/2. The very high  The typical ΔK  for the alloy with basketweave of 60 and 40 μm are 4 MPa∙m The typical ∆Kth for ththe alloy with basketweave of 60 and 40 µm are 4 MPa·m1/2 . The very high cycle cycle fatigue limit for the alloy with basketweave of 60 and 40 μm are 438 and 536 MPa based on  fatigue limit for the alloy with basketweave of 60 and 40 µm are 438 and 536 MPa based on Equation (3), Equation  (3),  which with are the consistent  with results. the  experimental  results.  Therefore,  basketweave  which are consistent experimental Therefore, basketweave size remarkably affectssize  the remarkably  affects  the properties very  high  fatigue  properties  of  isthe  TC21  titanium  alloy  and  of is  very high cycle fatigue of cycle  the TC21 titanium alloy and responsible for the variability responsible for the variability of fatigue properties.  fatigue properties.

  Figure 8. Relationship between the stress intensity factor range at FGA and fatigue life.  Figure 8. Relationship between the stress intensity factor range at FGA and fatigue life.

3.4. Effect of Basketweave on Fatigue Life  3.4. Effect of Basketweave on Fatigue Life Considering that most of the total VHCF fatigue life is consumed by the crack initiation stage,  Considering that most of the total VHCF fatigue life is consumed by the crack initiation stage, fatigue life of TC21 alloy can be estimated using an energy‐based crack nucleation life model, which  fatigue life of TC21 alloy can be estimated using an energy-based crack nucleation life model, which can be calculated as [17]:  can be calculated as [17]: 3 2 M33 c 4πµ 4 hh2 M c NN   i =  2 i 3 2 2 3 2 2 2 µ2 2 ] 0.005d 1−  ((1  υ))2 + ξMM2  0.005d(∆σ (−2Mk 2Mk)[)[π ∆σ ]

(4) (4) 

where ∆σ is the stress amplitude for the stress ratio of −1. μ, ν are the shear modulus and Poisson’s  ratio of material, d is the microstructure characteristics size, and it is the size of basketweave in this  paper, c is the size of crack, which is herein considered as the size of FGA, M is the Taylor factor and   

Metals 2018, 8, 401

9 of 11

where ∆σ is the stress amplitude for the stress ratio of −1. µ, ν are the shear modulus and Poisson’s ratio of material, d is the microstructure characteristics size, and it is the size of basketweave in9 of 11  this Metals 2018, 8, x FOR PEER REVIEW    paper, c is the size of crack, which is herein considered as the size of FGA, M is the Taylor factor and is 9 cycles, is  equal  2,  2Mk  the  fatigue  limit  defined  as  the strength fatigue at strength  at  10 the  life  of parameters 109  cycles,  equal to 2,to  2Mk is theis  fatigue limit defined as the fatigue the life of hparameters h and ξ can be determined by the fitting of the S‐N curves, and then the nucleation life  and ξ can be determined by the fitting of the S-N curves, and then the nucleation life curves for curves for different microstructure can be established.  different microstructure can be established. Based on the fatigue data of TC21 alloy with basketweave microstructure, parameters h and ξ  Based on the fatigue data of TC21 alloy with basketweave microstructure, parameters h and ξ are fitted  as 0.9  and 0.0001, 0.0001, and  the prediction prediction of of the the subsurface subsurface crack  nucleation life life is shown  in  are fitted as 0.9 and and the crack nucleation is shown in Figure 9. It is suggested that the energy‐based crack nucleation life model can be well used to predict  Figure 9. It is suggested that the energy-based crack nucleation life model can be well used to predict the subsurface crack nucleation life, and the large basketweave size significantly reduces the fatigue  the subsurface crack nucleation life, and the large basketweave size significantly reduces the fatigue life. Thus, fatigue properties can be improved by the refinement of basketweave.  life. Thus, fatigue properties can be improved by the refinement of basketweave.  

  Figure 9.9.  Comparison  fatigue  life life  with with  different different  basketweave basketweave  size size  versus versus  the the  Figure Comparison of  of the  the predicted  predicted fatigue experimental data.  experimental data.

4. Conclusions  4. Conclusions The conclusions are summarized as follows:  The conclusions are summarized as follows: (1) Step-wise S-N characteristics are are  observed on a TC21 alloy withalloy  two sizes oftwo  basketweave (1) Step‐wise  S‐N  characteristics  observed  on  a titanium TC21  titanium  with  sizes  of  5–109 cycle regimes. The fatigue property of the alloy with basketweave of  over 105 –109 cycle regimes. The fatigue property of the alloy with basketweave of 40 µm is higher basketweave over 10 40 μm is higher than that of 60 μm.  than that of 60 µm. (2) Fatigue crack initiates from the surface α/β phase interface at a relatively high stress amplitude,  (2) Fatigue crack initiates from the surface α/β phase interface at a relatively high stress amplitude, whereas  the  fatigue  crack  appears  the  sample  subsurface  at  a  relatively  low  stress  whereas the fatigue crack sitesite  appears at theat  sample subsurface at a relatively low stress amplitude; amplitude;  α/β  lamellar  characteristic  present at  the  crack initiation site  of  the  alloy  where  α/β lamellar characteristic is present atis  the crack initiation site of the alloy where FGA is found FGA is found alongside basketweave.    alongside basketweave. (3) Very  high  cycle cycle  fatigue fatigue  limits limits  of of TC21 TC21 titanium titanium alloy alloy with with basketweave basketweave microstructure microstructure  are are  (3) Very high evaluated based on the Murakami model, which are consistent with the experimental results.  evaluated based on the Murakami model, which are consistent with the experimental results. The fatigue fatigue life life  of  TC21  titanium  well  predicted  tan  energy‐based  crack  The of TC21 titanium alloy alloy  is wellis  predicted using tanusing  energy-based crack nucleation nucleation life model.    life model. Author and D.C. conceived and designed the experiments; J.Z., M.L., F.L.M.L.,  and S.L. performed Author Contributions: Contributions: Z.Z. Z.Z.  and  D.C.  conceived  and  designed  the  experiments;  J.Z.,  F.L.  and  S.L.  the experiments; B.N. analyzed the experiments, and wrote the paper. performed the experiments; B.N. analyzed the experiments, and wrote the paper.  Funding: This work was supported by the National Natural Science Foundation of China (Grant No. 51571009). Funding: This work was supported by the National Natural Science Foundation of China (Grant No. 51571009).  Special funds for the scientific and technological development of Guangdong (2017A010103029). Foshan programs Special  for  the  scientific  technological  Guangdong  (2017A010103029).  Foshan  of sciencefunds  and technology research and  (2017AB003941), thedevelopment  “5511” projectof  driven innovation program of Yichun City, the talent research start-up program of Foshan University (gg040940). programs of science and technology research (2017AB003941), the “5511” project driven innovation program of  Yichun City, the talent research start‐up program of Foshan University (gg040940). 

Conflicts of Interest: The authors declare no conflict of interest.   

Metals 2018, 8, 401

10 of 11

Conflicts of Interest: The authors declare no conflict of interest.

References 1.

2. 3. 4. 5. 6. 7. 8. 9. 10. 11.

12. 13. 14. 15. 16. 17. 18. 19.

20. 21. 22. 23.

Zheng, Y.; Zhao, Z.H.; Zhang, Z.; Zong, W.; Dong, C. Internal crack initiation characteristics and early growth behaviors for very-high-cycle fatigue of a titanium alloy electron beam welded joints. Mater. Sci. Eng. A 2017, 706, 311–318. [CrossRef] Nie, B.; Zhao, Z.; Ouyang, Y.; Chen, D.; Chen, H.; Sun, H.; Liu, S. Effect of low cycle fatigue predamage on very high cycle fatigue behavior of TC21 titanium alloy. Materials 2017, 10, 1384. [CrossRef] [PubMed] Nie, B.; Zhao, Z.; Liu, S.; Chen, D.; Ouyang, Y.; Chen, H.; Fan, T.; Sun, H. Very high cycle fatigue behavior of a directionally solidified Ni-base superalloy DZ4. Materials 2018, 11, 98. [CrossRef] [PubMed] Wu, Y.; Liu, J.R.; Wang, H.; Guan, S.X.; Yang, R.; Xiang, H.F. Effect of stress ratio on very high cycle fatigue properties of Ti-10V-2FE-3Al alloy with duplex microstructure. J. Mater. Sci. Technol. 2017. [CrossRef] Zuo, J.H.; Wang, Z.G.; Han, E.H. Effect of microstructure on ultra-high cycle fatigue behavior of Ti-6Al-4V. Mater. Sci. Eng. A 2008, 473, 147–152. [CrossRef] Sushant, K.J.; Christopher, J.S.; Patrick, J.G.; William, J.P.; Reji, J. Characterization of fatigue crack-initiation facets in relation to lifetime variability in Ti-6Al-4V. Int. J. Fatigue 2012, 42, 248–257. McEvily, A.J.; Nakamura, T.; Oguma, H.; Yamashita, K.; Matsumnaga, H.; Endo, M. On the mechanism of very high cycle fatigue in Ti-6Al-4V. Scr. Mater. 2008, 59, 1207–1209. [CrossRef] Oguma, H.; Nakamura, T. The effect of microstructure on very high cycle fatigue properties in Ti-6AL-4V. Scr. Mater. 2010, 63, 32–34. [CrossRef] Szczepanski, C.J.; Jha, S.K.; Larsen, J.M.; Jones, J.W. Microstructural influences on very-high-cycle fatigue-crack initiation in Ti-6246. Metall. Mater. Trans. A 2008, 39, 2841–2851. [CrossRef] LeBiavant, K.; Pommier, S.; Prioul, C. Local texture and fatigue crack initiaton in a Ti-6Al-4V. Fatigue Fract. Eng. Mater. Struct. 2002, 25, 527–545. [CrossRef] Sinha, V.; Spowart, J.E.; Mills, M.J.; Williams, J.C. Observations on the faceted initiation site in the dwell-fatigue tested Ti-6242 alloy: Crystallographic orientation and size effects. Metall. Mater. Trans. A 2006, 37, 1507–1518. [CrossRef] Ravi Chandran, K.S.; Jha, S.K. Duality of the S-N fatigue curve caused by competing failure modes in a titanium alloy and the role of Poisson defect statistics. Acta Mater. 200, 53, 1867–1881. [CrossRef] Liu, X.L.; Sun, C.Q.; Hong, Y.S. Faceted crack initiation characteristics for high-cycle and very-high-cycle fatigue of a titanium alloy under different stress ratios. Int. J. Fatigue 2016, 92, 434–441. [CrossRef] Pan, X.; Su, H.; Sun, C.; Hong, Y. The behavior of crack initiation and early growth in high-cycle and very high-cycle fatigue regimes for a titanium alloy. Int. J. Fatigue 2018. [CrossRef] Crupi, V.; Epasto, G.; Guglielmino, E.; Squillace, A. Influence of microstructure [alpha + beta and beta] on very high cycle fatigue behaviour of Ti-6Al-4V alloy. Int. J. Fatigue 2017, 95, 64–75. [CrossRef] Yang, K.; He, C.; Huang, Q.; Huang, Z.Y.; Wang, C.; Wang, Q.Y.; Liu, Y.L.; Zhong, B. Very high cycle fatigue behaviors of a turbine engine blade alloy at various stress ratios. Int. J. Fatigue 2017, 99, 35–43. [CrossRef] Bathias, C. Piezoelectric fatigue testing machines and devices. Int. J. Fatigue 2006, 28, 1438–1445. [CrossRef] Li, W.; Zhao, H.Q.; Nehila, A.; Zhang, Z.Y.; Sakai, T. Very high cycle fatigue of TC4 titanium alloy under variable stress ratio: Failure mechanism and life prediction. Int. J. Fatigue 2017, 10, 342–354. [CrossRef] Zhang, S.Z.; Zeng, W.D.; Zhao, Q.Y.; Gao, X.X.; Wang, Q.J. High cycle fatigue of isothermally forged Ti-6.5Al-2.2Mo-2.2Zr-1.8Sn-0.7W-0.2Si with different microstructures. J. Alloys Compd. 2016, 689, 114–122. [CrossRef] Horstemeyer, M.F.; Farkas, D.; Kim, S.; Tang, T.; Potirniche, G. Nanostructurally small cracks (NSC): A review on atomistic modeling of fatigue. Int. J. Fatigue 2010, 32, 1273–1502. [CrossRef] Ranc, N.; Wagner, D.; Paris, P.C. Study of thermal effects associated with crack propagation during very high cycle fatigue tests. Acta Mater. 2008, 56, 4012–4021. [CrossRef] Wang, Q.Y.; Bathias, C.; Kawagoishi, N.; Kawagoishi, N.; Chen, Q. Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength. Int. J. Fatigue 2002, 24, 1269–1274. [CrossRef] Murakami, Y.; Endo, M. Effects of defects, inclusion and inhomogeneities on fatigue strength. Int. J. Fatigue 1994, 16, 163–182. [CrossRef]

Metals 2018, 8, 401

24. 25. 26. 27. 28.

11 of 11

Nie, B.H.; Zhang, Z.; Zhao, Z.H.; Zhong, Q.P. Very high cycle fatigue behavior of shot peening 3Cr13 high strength spring steel. Mater. Des. 2013, 50, 503–508. [CrossRef] Zhao, A.; Xie, J.; Sun, C.; Hong, Y. Prediction of threshold value for FGA formation. Mater. Sci. Eng. A 2011, 528, 6872–6877. [CrossRef] Richie, R.O.; Davidson, D.L.; Boyce, B.L.; Campbell, J.P.; Roder, O. High-cycle fatigue of Ti6Al4V. Fatigue Fract. Eng. Mater. Struct. 1999, 22, 621–631. Petit, J.; Sarrazin-Baudoux, C. An overview on the influence of the atmosphere environment on ultra-high-cycle fatigue and ultr-slow fatigue crack propagation. Int. J. Fatigue 2006, 28, 1471–1478. [CrossRef] Chapetti, M.D. Fatigue assessment using an integrated threshold curve method-applications. Eng. Fract. Mech. 2008, 75, 1854–1863. [CrossRef] © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Suggest Documents