surface parameterization using Riemann Surface Structure

6 downloads 0 Views 2MB Size Report
Cortical Surface extraction with Freesurfer. 2. ... Connectome-based cortical surface registration ... information with cortical surface anatomy for a joint.
rm itt ed

rC re at iv

e

C o

un de r

P se U

o m om

un de

C

Pe rm itt e

at

d

iv e

se

Boris A. Gutman, Neda Jahanshad, Derek Hibar, Cassandra Leonardo, Kristian Eschenburg, Talia Nir, Julio Villalon-Reina, Paul M. Thompson

:U

10 00

Po

Pe

st er s:

Continuous Connectomics: An Exploratory Framework for Connectivity Analysis in Brain Imaging

m

ed

MRI tractography. Medical Image Analysis 15, 414-425 (2011) [2] Gutman, B.A., et al.: A Family of Fast Spherical Registration Algorithms for Cortical Shapes. Multimodal Brain Image Analysis (MBIA) (2013)

de r m Pe r Po

. Li ce ns e

on s

m

om

un d

[1]. Aganj, I., et al.: A Hough transform global probabilistic approach to multiple-subject diffusion

:U se

un

om

C

re at iv

๐’…๐’š๐’…๐’›.

C

rm

๐Ÿ/๐Ÿ‘

C

References

๐“’

๐‘ฒ(๐’™, ๐’š)๐‘ฒ(๐’™, ๐’›)๐‘ฒ(๐’š, ๐’›)

Pe

where ๐’• ๐’™ =

๐’…๐’š

,

er

ed

itt

s:

๐’šโˆˆ๐œด ๐‘ฒ ๐’™,๐’š >๐ŸŽ

We have presented a framework for fusing connectivity information with cortical surface anatomy for a joint connectivity analysis. There are four distinct contributions: (1) the definition of a continuous connectome space and a method for estimating continuous kernels from fiber models; (2) an algorithm for defining a mutual connectome shared by two brains; (3) a spatial correspondence search between two connectome kernels, directly registering the brainsโ€™ structural connectivities; (4) an adaptation of graph theory measures to the continuous setting.

e

un

se

U

โ€ข Continuous Clustering Coefficient:

๐Ÿ

se

Li on s Conclusion

โ€ข Continuous Nodal degree (connectedness): ๐’Œ ๐’™ = ๐œด ๐‘ฒ(๐’™, ๐’š)๐’…๐’š = ๐‘ฒ ๐’™, ๐’™ ๐Ÿ๐’• ๐’™

Corrected p-maps for AD-NC difference in (A) clustering coefficient , (B) connectedness, a.k.a. continuous nodal degree

m

de rC

Pe rm

5. Continuous Connectomics

๐‘ช ๐’™ =

ce ns e.

C

e

๐’…๐’™.

tiv

๐’‡๐’™

re a

๐’™ โˆ’

er s:

on s

m om

C

er

un d

โˆˆ ๐‘ฌ๐‘ด

๐’˜๐’Œ

itt

ed

๐œด

๐’†๐Ÿ๐’Š ,๐’†๐Ÿ๐’‹ ,๐’˜๐’Œ ๐’Œ ๐’Œ

๐Ÿ

F1 00 0

e

re at iv

d

te

4. Connectome-based cortical surface registration

๐Ÿ ๐’†๐’‹ ๐’Œ

st

Li ce ns e

om

C

de r

un

Both measures passed False Discovery Rate (FDR) correction. Connectedness: q = 1.0x10-3 for the right -3 hemisphere, and q = 1.9x10 for the left. Clustering -3 coefficient: q = 1.7x10 for the right hemisphere and q = 2.5x10-5 for the left.

๐’Œ

โ€ข Registering connectomes reduces to multi-channel registration:

Individual improvement 0.098 +/-0.089 0.2 +/-0.089

4. Sensitivity of continuous connectomics to Alzheimerโ€™s Disease

tiv e

C re

โ€ข By projecting networks of one personโ€™s brain into appropriate eigenspaces of another we can match networks between individual brains. ๐Ÿ ๐Ÿ Mutual network set: ๐‘ฌ๐‘ด = ๐’†๐’Š๐’Œ , ๐’†๐’‹ , ๐’˜๐’Œ

Anatomy + connectivity 0.43 +/-0.12 0.12 +/-0.099

st e

Full kernel Mutual kernel

on s

at iv

e

โ€ข Eigenfuncions of the connectome kernel (eigennetworks) fully describe the connectome per Mercerโ€™s Theorem: ๐‘ฒ ๐’™, ๐’š = ๐’Š ๐€๐’Š ๐’†๐’Š ๐’™ ๐’†๐’Š ๐’š

Po

Li c

3. Eigen-network matching

Anatomy only 0.528 +/-0.101 0.32 +/-0.082

10 00

.

U

F1 00

โ€ข Spherical fluid framework [2] โ€ข Connectome mismatch reduced compared to purely anatomical registration:

en se .

on s

m

C om

3. Connectome registration

๐Ÿ=๐’Šโ‰ค๐‘ต๐’‡๐’Š๐’ƒ๐’†๐’“๐’”

๐Ÿ ๐’†๐’Š๐’Œ

rm itt ed se

Po st er

0

Li

e

iv

๐‘ฒ ๐’™, ๐’š =

๐’Š ๐‘ฎ๐ˆ ๐’‘๐Ÿ , ๐’š

Pe

st e

e. F

ce ns

C om

2. Matched eigen-networks (right)

โ€ข Treat each fiber as an obseravtion in a connectome space โ€ข Use kernel density estimation to compute a continuous connectivity profile for each brain:

๐‚ ๐‘ฌ๐‘ด , ๐’‡ =

B

s: U

m on s

Pre-processing

โ€ข Tractogaphy with Hough Transform [1] โ€ข Cortical Surface extraction with Freesurfer

ea t

Po

Method

10 00

Li

ce ns

e. F

โ€ข Current connectivity analysis assumes a small discrete graph โ€“ not flexible enough for connectome matching

๐’Š ๐‘ฎ๐ˆ ๐’™, ๐’‘๐Ÿ

C r

rm Pe

se

U rs :

Li

ns

1. Visualizing individual fiber model contribution to the continuous connectome

10 00

ce

โ€ข Matching connectivity profiles across brains may therefore improve brain surface registration

2. Continuous Connectome

er C re

ed

itt

Po st er s:

Results

.F

ns e. F1 00 0

โ€ข Structural connectivity may be a better indicator of functional role of brain regions than gross anatomy alone

1.

Data

ADNI 2 dataset: 64-direction DTI images & T1-weighed images for cortical surface extraction. 48 Alzheimerโ€™s patients. 50 age-matched controls.

U se

Po

Motivation: matching connectomes across different brains

un d

st er s

Imaging Genetics Center, Institute for Neuroimaging & Informatics, University of Southern California, Los Angeles, CA, USA.