Cortical Surface extraction with Freesurfer. 2. ... Connectome-based cortical surface registration ... information with cortical surface anatomy for a joint.
rm itt ed
rC re at iv
e
C o
un de r
P se U
o m om
un de
C
Pe rm itt e
at
d
iv e
se
Boris A. Gutman, Neda Jahanshad, Derek Hibar, Cassandra Leonardo, Kristian Eschenburg, Talia Nir, Julio Villalon-Reina, Paul M. Thompson
:U
10 00
Po
Pe
st er s:
Continuous Connectomics: An Exploratory Framework for Connectivity Analysis in Brain Imaging
m
ed
MRI tractography. Medical Image Analysis 15, 414-425 (2011) [2] Gutman, B.A., et al.: A Family of Fast Spherical Registration Algorithms for Cortical Shapes. Multimodal Brain Image Analysis (MBIA) (2013)
de r m Pe r Po
. Li ce ns e
on s
m
om
un d
[1]. Aganj, I., et al.: A Hough transform global probabilistic approach to multiple-subject diffusion
:U se
un
om
C
re at iv
𝒅𝒚𝒅𝒛.
C
rm
𝟏/𝟑
C
References
𝓒
𝑲(𝒙, 𝒚)𝑲(𝒙, 𝒛)𝑲(𝒚, 𝒛)
Pe
where 𝒕 𝒙 =
𝒅𝒚
,
er
ed
itt
s:
𝒚∈𝜴 𝑲 𝒙,𝒚 >𝟎
We have presented a framework for fusing connectivity information with cortical surface anatomy for a joint connectivity analysis. There are four distinct contributions: (1) the definition of a continuous connectome space and a method for estimating continuous kernels from fiber models; (2) an algorithm for defining a mutual connectome shared by two brains; (3) a spatial correspondence search between two connectome kernels, directly registering the brains’ structural connectivities; (4) an adaptation of graph theory measures to the continuous setting.
e
un
se
U
• Continuous Clustering Coefficient:
𝟐
se
Li on s Conclusion
• Continuous Nodal degree (connectedness): 𝒌 𝒙 = 𝜴 𝑲(𝒙, 𝒚)𝒅𝒚 = 𝑲 𝒙, 𝒙 𝟐𝒕 𝒙
Corrected p-maps for AD-NC difference in (A) clustering coefficient , (B) connectedness, a.k.a. continuous nodal degree
m
de rC
Pe rm
5. Continuous Connectomics
𝑪 𝒙 =
ce ns e.
C
e
𝒅𝒙.
tiv
𝒇𝒙
re a
𝒙 −
er s:
on s
m om
C
er
un d
∈ 𝑬𝑴
𝒘𝒌
itt
ed
𝜴
𝒆𝟏𝒊 ,𝒆𝟐𝒋 ,𝒘𝒌 𝒌 𝒌
𝟐
F1 00 0
e
re at iv
d
te
4. Connectome-based cortical surface registration
𝟐 𝒆𝒋 𝒌
st
Li ce ns e
om
C
de r
un
Both measures passed False Discovery Rate (FDR) correction. Connectedness: q = 1.0x10-3 for the right -3 hemisphere, and q = 1.9x10 for the left. Clustering -3 coefficient: q = 1.7x10 for the right hemisphere and q = 2.5x10-5 for the left.
𝒌
• Registering connectomes reduces to multi-channel registration:
Individual improvement 0.098 +/-0.089 0.2 +/-0.089
4. Sensitivity of continuous connectomics to Alzheimer’s Disease
tiv e
C re
• By projecting networks of one person’s brain into appropriate eigenspaces of another we can match networks between individual brains. 𝟏 𝟐 Mutual network set: 𝑬𝑴 = 𝒆𝒊𝒌 , 𝒆𝒋 , 𝒘𝒌
Anatomy + connectivity 0.43 +/-0.12 0.12 +/-0.099
st e
Full kernel Mutual kernel
on s
at iv
e
• Eigenfuncions of the connectome kernel (eigennetworks) fully describe the connectome per Mercer’s Theorem: 𝑲 𝒙, 𝒚 = 𝒊 𝝀𝒊 𝒆𝒊 𝒙 𝒆𝒊 𝒚
Po
Li c
3. Eigen-network matching
Anatomy only 0.528 +/-0.101 0.32 +/-0.082
10 00
.
U
F1 00
• Spherical fluid framework [2] • Connectome mismatch reduced compared to purely anatomical registration:
en se .
on s
m
C om
3. Connectome registration
𝟏=𝒊≤𝑵𝒇𝒊𝒃𝒆𝒓𝒔
𝟏 𝒆𝒊𝒌
rm itt ed se
Po st er
0
Li
e
iv
𝑲 𝒙, 𝒚 =
𝒊 𝑮𝝈 𝒑𝟐 , 𝒚
Pe
st e
e. F
ce ns
C om
2. Matched eigen-networks (right)
• Treat each fiber as an obseravtion in a connectome space • Use kernel density estimation to compute a continuous connectivity profile for each brain:
𝐂 𝑬𝑴 , 𝒇 =
B
s: U
m on s
Pre-processing
• Tractogaphy with Hough Transform [1] • Cortical Surface extraction with Freesurfer
ea t
Po
Method
10 00
Li
ce ns
e. F
• Current connectivity analysis assumes a small discrete graph – not flexible enough for connectome matching
𝒊 𝑮𝝈 𝒙, 𝒑𝟏
C r
rm Pe
se
U rs :
Li
ns
1. Visualizing individual fiber model contribution to the continuous connectome
10 00
ce
• Matching connectivity profiles across brains may therefore improve brain surface registration
2. Continuous Connectome
er C re
ed
itt
Po st er s:
Results
.F
ns e. F1 00 0
• Structural connectivity may be a better indicator of functional role of brain regions than gross anatomy alone
1.
Data
ADNI 2 dataset: 64-direction DTI images & T1-weighed images for cortical surface extraction. 48 Alzheimer’s patients. 50 age-matched controls.
U se
Po
Motivation: matching connectomes across different brains
un d
st er s
Imaging Genetics Center, Institute for Neuroimaging & Informatics, University of Southern California, Los Angeles, CA, USA.