Page 1 @ > @ > 1 @ > > < [email protected] 2

2 downloads 0 Views 747KB Size Report
If (Tp is s) and (T12 is s) and (b is s) and (Tt is s) and (Kp is s) then (k is vm). If (Tp is s) and (T12 is s) and (b is s) and (Tt is s) and (Kp is m) then (k is l). If (Tp is s) ...
‫ﻛﻨﺘﺮل ﻓﺮﻛﺎﻧﺲ ﺳﻴﺴﺘﻢ دوﻣﻨﻄﻘﻪ اي ﺑﺎ اﺳﺘﻔﺎده از ﻣﻨﻄﻖ ﻓﺎزي‬ ‫‪1‬داود *‬ ‫ﻗﻨﺒﺮي‪ 2 ،‬ﻧﻮﻳﺪرﺿﺎاﺑﺠﺪي‪ 3 ،‬ﻋﺒﺎس ﻛﺎرﮔﺮ‬ ‫‪1‬‬

‫داﻧﺸﮕﺎه ﺷﻬﺮ ﻛﺮد‪[email protected] ،‬‬ ‫‪ 2‬داﻧﺸﮕﺎه ﺷﻬﺮﻛﺮد‪[email protected] ،‬‬ ‫‪3‬‬

‫داﻧﺸﮕﺎه ﺷﻬﺮﻛﺮد‪[email protected] ،‬‬

‫ﭼﻜﻴﺪه‬ ‫در اﻳﻦ ﻣﻘﺎﻟﻪ ﻛﻨﺘﺮل ﻛﻨﻨﺪه اﻧﺘﮕﺮاﻟﻲ ﺑﺎ ﻛﻨﺘﺮل ﻛﻨﻨﺪه ﻓﺎزي ﺟﺎﻳﮕﺰﻳﻦ ﻣﻲ ﮔﺮدد اﻳﻦ ﻛﻨﺘﺮل ﻛﻨﻨﺪه اﻧﻌﻄﺎف ﭘﺬﻳﺮ ﺑﻮده و ﻋﻤﻠﻜﺮد ﻣﻘﺎوﻣﻲ در ﺑﺮاﺑﺮ ﺗﻐﻴﻴﺮ ﭘﺎراﻣﺘﺮﻫﺎي‬ ‫ﺳﻴﺴﺘﻢ و ﻋﻮاﻣﻞ ﻏﻴﺮ ﺧﻄﻲ ﻧﻈﻴﺮ ﻣﺤﺪودﻳﺖ ﺗﻮﻟﻴﺪ ژﻧﺮاﺗﻮر ﺗﺤﺖ ﺷﺮاﻳﻂ ﻣﺨﺘﻠﻒ ﺑﺎر از ﺧﻮد ﻧﺸﺎن ﻣﻲ دﻫﺪ‪ .‬از اﻳﻦ رو ﭼﻨﻴﻦ ﺑﻪ ﻧﻈﺮ ﻣﻲ رﺳﺪ ﻛﻪ ﻛﻨﺘﺮل ﻛﻨﻨﺪه‬ ‫ﭘﻴﺸﻨﻬﺎدي ﻣﻲ ﺗﻮاﻧﺪ در ﺳﻴﺴﺘﻢ ﻫﺎي واﻗﻌﻲ ﺑﻪ ﻛﺎر رود ‪.‬ﻛﻨﺘﺮل ﻛﻨﻨﺪه ﭘﻴﺸﻨﻬﺎدي ﺑﻪ ﺳﻴﺴﺘﻢ ﻗﺪرت دو ﻧﺎﺣﻴﻪ اي اﻋﻤﺎل ﺷﺪه و ﻧﺘﺎﻳﺞ ﺣﺎﺻﻞ از آن ﺑﺎ ﻛﻨﺘﺮل ﻛﻨﻨﺪه ‪PI‬‬ ‫ﻛﻼﺳﻴﻚ ﻣﻘﺎﻳﺴﻪ ﻣﻲ ﮔﺮدد‪ .‬ﻧﺘﺎﻳﺞ ﺣﺎﺻﻞ از ﺷﺒﻴﻪ ﺳﺎزي ﻧﺸﺎن ﻣﻲ دﻫﺪ ﻛﻪ رﻓﺘﺎر ﻛﻨﺘﺮل ﻛﻨﻨﺪه ﭘﻴﺸﻨﻬﺎدي در ﻣﻘﺎﺑﻞ ﺗﻐﻴﻴﺮ ﭘﺎراﻣﺘﺮﻫﺎ و ﺗﻐﻴﻴﺮات ﺑﺎر و ﻣﺤﺪودﻳﺖ ﻧﺮخ‬ ‫ﺗﻮﻟﻴﺪ ﺑﻬﺘﺮ از ﻛﻨﺘﺮل ﻛﻨﻨﺪه ‪ PI‬ﻛﻼﺳﻴﻚ اﺳﺖ و ﻋﻤﻠﻜﺮد ﻣﻘﺎوﻣﻲ را از ﺧﻮد ﻧﺸﺎن ﻣﻲ دﻫﺪ‪.‬‬

‫واژه ﻫﺎي ﻛﻠﻴﺪي‪ :‬ﻛﻨﺘﺮل ﻓﺮﻛﺎﻧﺲ ‪ ،‬ﺳﻴﺴﺘﻢ دو ﻣﻨﻄﻘﻪ اي ‪ ،‬ﻛﻨﺘﺮل ﻓﺎزي‬

‫‪-1‬‬

‫ﻣﻘﺪﻣﻪ‬ ‫از ﻗﺒﻴﻞ ﻣﺤﺪودﻳﺖ ﻫﺎي ﺗﻮرﺑﻴﻦ‪ -‬ﮔﺎورﻧﺮ‪ -‬ﺳﻴﺴﺘﻢ ﻗﺪرت واﻏﺘﺸﺎﺷﺎت ﺑﺎر‬ ‫را ﺑﺮآورده ﺳﺎزد‪.‬‬

‫ﺑﻪ ﻣﻨﻈﻮر ﻋﻤﻠﻜﺮد رﺿﺎﻳﺖ ﺑﺨﺶ ﻳﻚ ﺳﻴﺴﺘﻢ ﻗﺪرت ‪ ،‬ﺛﺒﺎت ﻓﺮﻛﺎﻧﺲ‬ ‫ﺳﻴﺴﺘﻢ ﻗﺪرت اﻣﺮي ﺿﺮوري اﺳﺖ‪ .‬زﻳﺮا ﻛﻪ ﻛﻨﺘﺮل ﻧﺴﺒﺘﺄ دﻗﻴﻖ ﻓﺮﻛﺎﻧﺲ‬ ‫ﺛﺒﺎت ﺳﺮﻋﺖ ﻣﻮﺗﻮرﻫﺎي ﺳﻨﻜﺮون و اﻟﻘﺎﻳﻲ را ﺑﻪ دﻧﺒﺎل دارد و ﺗﺜﺒﻴﺖ‬ ‫ﺳﺮﻋﺖ راه اﻧﺪازي ﻣﻮﺗﻮري ﺑﻪ ﻃﻮر وﻳﮋه در ﻋﻤﻠﻜﺮد رﺿﺎﻳﺖ ﺑﺨﺶ‬ ‫واﺣﺪﻫﺎي ﺗﻮﻟﻴﺪي اﻫﻤﻴﺖ دارد‪.‬ﺛﺒﺎت ﻓﺮﻛﺎﻧﺲ ﺳﻴﺴﺘﻢ ﻗﺪرت ﺑﺴﺘﮕﻲ ﺑﻪ‬ ‫ﺗﻌﺎدل ﺗﻮان اﻛﺘﻴﻮ دارد و از آﻧﺠﺎ ﻛﻪ ﻓﺮﻛﺎﻧﺲ ﻋﺎﻣﻞ ﻣﺸﺘﺮﻛﻲ در ﺳﺮﺗﺎﺳﺮ‬ ‫ﺳﻴﺴﺘﻢ اﺳﺖ‪ ،‬ﻫﺮ ﺗﻐﻴﻴﺮي در ﺗﻌﺎدل ﺑﻴﻦ ﺗﻘﺎﺿﺎ و ﺗﻮﻟﻴﺪ ﺗﻮان اﻛﺘﻴﻮ ﻳﻚ‬ ‫ﺷﺒﻜﻪ‪ ،‬ﺑﻪ ﺷﻜﻞ ﺗﻐﻴﻴﺮ ﻓﺮﻛﺎﻧﺲ در ﺳﺮﺗﺎﺳﺮ ﺷﺒﻜﻪ ﻣﻨﻌﻜﺲ ﻣﻲ ﺷﻮد‪.‬‬ ‫ﺑﻨﺎﺑﺮاﻳﻦ ﻛﻨﺘﺮل ﺑﺎر ﻓﺮﻛﺎﻧﺲ در ﺳﻴﺴﺘﻢ ﻗﺪرت ﺑﺰرگ ﺑﺮاي ﺗﺎﻣﻴﻦ اﻧﺮژي‬ ‫اﻟﻜﺘﺮﻳﻜﻲ ﺑﺎ ﻗﺎﺑﻠﻴﺖ اﻃﻤﻴﻨﺎن ﺑﺎﻻ و ﻛﻴﻔﻴﺖ ﻣﻄﻠﻮب اﻣﺮي ﺿﺮوري ﺑﻪ ﻧﻈﺮ‬ ‫ﻣﻲ رﺳﺪ‪ .‬ﻫﺪف اﺻﻠﻲ ﻛﻨﺘﺮل ﺑﺎر ﻓﺮﻛﺎﻧﺲ ﺻﻔﺮ ﻧﮕﻪ داﺷﺘﻦ ﺧﻄﺎي‬ ‫ﻣﺎﻧﺪﮔﺎر ﻣﻲ ﺑﺎﺷﺪ‪.‬ﺑﺮاي ﻣﺴﺄﻟﻪ ﻛﻨﺘﺮل ﺑﺎر ﻓﺮﻛﺎﻧﺲ روش ﻫﺎي ﻣﺨﺘﻠﻔﻲ‬ ‫اراﺋﻪ ﺷﺪه اﺳﺖ از ﺟﻤﻠﻪ ‪ :‬ﻛﻨﺘﺮل ﻛﻨﻨﺪه ‪ PI‬ﺳﺎده ﺷﺒﻜﻪ ﻫﺎي ﻋﺼﺒﻲ‬ ‫وﻳﻮﻟﺖ ﺷﺒﻜﻪ ﻫﺎي ﻋﺼﺒﻲ ‪،‬ﻛﻨﺘﺮل ﻛﻨﻨﺪه ﻣﺪ ﻟﻐﺰﺷﻲ و ﻛﻨﺘﺮل ﻛﻨﻨﺪه‪PI‬‬ ‫ﺑﻬﻴﻨﻪ وﻏﻴﺮه اراﺋﻪ ﺷﺪه اﺳﺖ‪ .‬در ﺑﻴﻦ روﺷﻬﺎي اراﺋﻪ ﺷﺪه ﻛﻨﺘﺮل ﻛﻨﻨﺪه ‪PI‬‬ ‫ﺑﻴﺶ از ﻫﻤﻪ در ﺻﻨﻌﺖ ﻣﻮرد ﺗﻮﺟﻪ ﻗﺮار ﮔﺮﻓﺘﻪ اﺳﺖ‪ .‬اﻳﻦ ﻛﻨﺘﺮل ﻛﻨﻨﺪه‬ ‫داراي ﮔﻴﻦ ﺛﺎﺑﺘﻲ ﻣﻲ ﺑﺎﺷﺪ ﻛﻪ در ﺷﺮاﻳﻂ ﻋﻤﻠﻜﺮد ﻧﺎﻣﻲ ﻃﺮاﺣﻲ ﻣﻲ ﮔﺮدد‬ ‫ﺑﻨﺎﺑﺮاﻳﻦ ﺑﻬﺮه ﺑﺮداري از آن ﺳﺎده ﺑﻮده وﻟﻲ ﻧﻮﺳﺎﻧﺎت ﻓﺮﻛﺎﻧﺲ در اﻳﻦ‬ ‫ﺣﺎﻟﺖ ﺑﺴﻴﺎر زﻳﺎد اﺳﺖ ‪ .‬ﺑﻨﺎﺑﺮاﻳﻦ ﺟﻬﺖ ﻛﻨﺘﺮل ﺑﺎر ﻓﺮﻛﺎﻧﺲ ﺑﻪ ﻛﻨﺘﺮل‬ ‫ﻛﻨﻨﺪه اي ﻧﻴﺎز اﺳﺖ ﺗﺎ ﺗﻤﺎﻣﻲ ﻣﺤﺪودﻳﺖ ﻫﺎي ﻣﻮﺟﻮد‬

‫‪- 2‬ﺳﻴﺴﺘﻢ ﻗﺪرت دو ﻣﻨﻄﻘﻪ اي‬ ‫ﺑﻪ ﻃﻮر ﻃﺒﻴﻌﻲ ﺳﻴﺴﺘﻢ ﻗﺪرت داراي ﺳﺎﺧﺘﺎر ﭼﻨﺪ ﻣﺘﻐﻴﺮه و ﭘﻴﭽﻴـﺪه‬ ‫اي داردو داراي ﺑﻠﻮك ﻫﺎي ﻛﻨﺘﺮل ﻣﺘﻔﺎوﺗﻲ اﺳﺖ ﻛـﻪ اﻏﻠـﺐ آن ﻫـﺎ ﻏﻴـﺮ‬ ‫ﺧﻄﻲ و ﻳﺎ ﻏﻴﺮ ﻣﻴﻨﻴﻤﻢ ﻓﺎز ﻫﺴﺘﻨﺪ‪.‬اﻣﺮوزه اﻏﻠﺐ ﺳﻴﺴﺘﻢ ﻫﺎي ﻗـﺪرت ﺑـﻪ‬ ‫ﻣﻨﺎﻃﻖ ﻣﺠﺎور ﺧﻮد ﻣﺘﺼﻞ ﻫﺴﺘﻨﺪ و اﺗﺼـﺎل اﻳـﻦ ﻣﻨـﺎﻃﻖ ﻛﻨﺘـﺮل ‪ ،‬ﻳـﻚ‬ ‫ﺳﻴﺴﺘﻢ ﻗﺪرت ﭼﻨﺪ ﻣﻨﻄﻘﻪ اي را ﺑـﻪ وﺟـﻮد ﻣـﻲ آورد‪.‬در ﻳـﻚ ﺳﻴﺴـﺘﻢ‬ ‫ﻗﺪرت ﭼﻨﺪ ﻣﻨﻄﻘﻪ اي ‪ ،‬ﻫﺮ ﻣﻨﻄﻘﻪ ﻛﻨﺘﺮل در ﺷﺮاﻳﻂ ﻛﺎر ﻋـﺎدي ﺑﺎرﻫـﺎي‬ ‫ﻣﻨﻄﻘﻪ ﺧﻮد را ﺗﺎﻣﻴﻦ ﻣﻲ ﻧﻤﺎﻳﺪ‪ .‬ﻣﺎ در اﻳﻦ ﻣﻘﺎﻟﻪ ﺑﺮاي ﺷﺒﻴﻪ ﺳﺎزي از ﻳﻚ‬ ‫ﺳﻴﺴﺘﻢ ﻛﻨﺘﺮل دو ﻣﻨﻄﻘﻪ اي اﺳﺘﻔﺎده ﻛﺮده اﻳﻢ‪.‬‬

‫‪ 1-2‬ﺳﻴﺴﺘﻢ ﻗﺪرت دوﻣﻨﻄﻘﻪ اي ﻛﻨﺘﺮل ﻧﺸﺪه‬ ‫ﺷﻜﻞ ‪ 1‬ﻳﻚ ﺳﻴﺴﺘﻢ ﻗﺪرت دو ﻧﺎﺣﻴﻪ اي در ﺣﺎﻟﺖ ﻛﻨﺘﺮل ﻧﺸﺪه را‬ ‫ﻧﺸﺎن ﻛﻪ در آن ‪ F‬ﻓﺮﻛﺎﻧﺲ ﺳﻴﺴﺘﻢ ﺑﺮ ﺣﺴﺐ ﻫﺮﺗﺰ و ‪ R‬ﺿﺮﻳﺐ ﺗﻨﻈﻴﻢ‬ ‫ژﻧﺮاﺗﻮرﺑﺮﺣﺴﺐ ﻫﺮﺗﺰ ﺑﺮ ﭘﺮﻳﻮﻧﻴﺖ ‪ Tg‬ﺛﺎﺑﺖ زﻣﺎﻧﻲ ژﻧﺮاﺗﻮر ﺑﺮ ﺣﺴﺐ‬ ‫ﺛﺎﻧﻴﻪ ‪ Tt‬ﺛﺎﺑﺖ زﻣﺎﻧﻲ ﺗﻮرﺑﻴﻦ ﺑﺮ ﺣﺴﺐ ﺛﺎﻧﻴﻪ و ‪ T p‬ﺛﺎﺑﺖ زﻣﺎﻧﻲ ﺳﻴﺴﺘﻢ‬ ‫ﻗﺪرت ﺑﺮ ﺣﺴﺐ ﺛﺎﻧﻴﻪ اﺳﺖ‪ .‬ﻣﺘﻐﻴﺮﻫﺎي ﺣﺎﻟﺖ ﺳﻴﺘﻢ ﺑﻪ ﺻﻮرت زﻳﺮ اﺳﺖ ‪:‬‬ ‫) ‪(1‬‬ ‫) ‪x • (t ) = Ax(t ) + Bu (t ) + Ld (t‬‬ ‫ﻛﻪ ‪ A‬ﻣﺎﺗﺮﻳﺲ ﺳﻴﺴﺘﻢ و ‪ B‬ورودي ﺳﻴﺴﺘﻢ و ‪ L‬ورودي اﻏﺘﺸﺎش اﺳﺖ‪.‬‬

‫‪436‬‬

‫)‪(2‬‬

‫‪x(t ) = [∆f1 , Pg1 , ∆Pt1 , ∆Ptie1 , ∆f 2 , ∆Pg 2 , ∆Pt 2 ]T‬‬

‫)‪(3‬‬

‫‪u (t ) = [u1 , u 2 ]T‬‬

‫)‪(4‬‬

‫] ‪d (t ) = [∆p d 1 , ∆p d 2‬‬

‫ﻛــﻪ در رواﺑــﻂ ﺑــﺎﻻ ‪ u1‬و ‪ u2‬ورودي ﻛﻨﺘــﺮل و ‪ ∆pd 1‬و ‪∆p d 2‬‬

‫ب ردار‬

‫اﻏﺘﺸﺎﺷﺎت ﺑﺎر ﻫﺴﺘﻨﺪ‪.‬‬

‫ﺷﻜﻞ)‪(3‬ﭘﺎﺳﺦ ﺧﻄﺎي ﺗﻮان اﻧﺘﻘﺎﻟﻲ ﺑﻴﻦ دو ﻣﻨﻄﻘﻪ‬

‫ﻫﻤﺎﻧﻄﻮر ﻛﻪ در ﺷﻜﻞ ﻫﺎي ‪2‬و‪ 3‬ﻣﺸﺨﺺ اﺳﺖ ﺑﻪ ﻋﻠﺖ اﻳﻨﻜﻪ ﺳﻴﺴﺘﻢ در‬ ‫ﺣﺎﻟﺖ ﻛﻨﺘﺮل ﻧﺸﺪه اﺳﺖ ﺧﻄﺎ ﺑﻪ ﺻﻔﺮ ﻧﺮﺳﻴﺪه اﺳﺖ در ﺻﻮرﺗﻲ ﻛﻪ ﺗﻤﺎﻳﻞ‬ ‫دارﻳﻢ ﻛﻪ ﺧﻄﺎ ﺑﻪ ﺻﻔﺮ ﺑﺮﺳﺪ‪.‬‬

‫‪ -3-2‬ﺳﻴﺴﺘﻢ ﻗﺪرت دوﻣﻨﻄﻘﻪ اي ﻛﻨﺘﺮل ﺷﺪه‬ ‫ﻫﻤﺎﻧﻄﻮرﻛﻪ ﻧﺘﺎﻳﺞ ﺷﻜﻞ ﻫﺎي ‪2‬و‪ 3‬ﻧﺸﺎن ﻣﻲ دﻫﺪ ﺑﺮ اﺛﺮ ﺗﻐﻴﻴﺮ ﺑﺎر در‬ ‫ﻣﻨﺎﻃﻖ ﻛﻨﺘﺮل ‪،‬در ﺣﺎﻟﺖ ﻣﺎﻧﺪﮔﺎر ﺟﺪﻳﺪ ﺧﻄﺎي ﻓﺮﻛﺎﻧﺲ در‬

‫ﺷﻜﻞ)‪ (1‬ﺳﻴﺴﺘﻢ ﻗﺪرت دوﻣﻨﻄﻘﻪ اي ﻛﻨﺘﺮل ﻧﺸﺪه‬

‫ﻛﻪ در ﺷﻜﻞ ﺑﺎﻻ ‪ Tt‬ﺛﺎﺑﺖ زﻣﺎﻧﻲ ﺗﻮرﺑﻴﻦ ‪ Tg‬ﺛﺎﺑﺖ زﻣﺎﻧﻲ ژﻧﺮاﺗﻮر‬

‫ﻣﻘﺪار ‪ ∆f 0‬ﺑﺎﻗﻲ ﻣﻲ ﻣﺎﻧﺪ و ﺑﻪ ﺻﻔﺮ ﻧﻤﻲ رﺳﺪ ‪ .‬ﻫﻤﭽﻨﻴﻦ ﻗﺪرت اﻧﺘﻘﺎﻟﻲ از‬

‫‪ R‬ﺿﺮﻳﺐ ﺗﻨﻈﻴﻢ ژﻧﺮاﺗﻮر ‪ T12‬ﻇﺮﻳﺐ ﺳﻨﻜﺮوﻧﻴﺰاﺳﻴﻮن و ‪ T p‬ﺛﺎﺑﺖ زﻣﺎﻧﻲ‬

‫ﻣﻨﻄﻘﻪ ‪ 1‬ﺑﻪ ‪ 2‬ﺑﻪ ﻣﻴﺰان ‪ ∆p120‬از ﺣﺪ ﻗﺪرت اﻧﺘﻘﺎﻟﻲ ﻣﻮرد ﺗﻮاﻓﻖ ﺑﻴﻦ دو‬ ‫ﻣﻨﻄﻘﻪ ﺗﺠﺎوز ﻣﻲ ﻛﻨﺪ ﺑﺮاي اﻳﻨﻜﻪ ﺧﻄﺎي ﻓﺮﻛﺎﻧﺲ و ﺗﻐﻴﻴﺮ ﻗﺪرت اﻧﺘﻘﺎﻟﻲ‬ ‫ﺑﻴﻦ دو ﻣﻨﻄﻘﻪ در ﺣﺎﻟﺖ ﻣﺎﻧﺪﮔﺎر ﺑﻪ ﺻﻔﺮ ﺑﺮﺳﺪ از ﺣﻠﻘﻪ ﻓﻴﺪﺑﻚ دوم‬ ‫ﺷﺎﻣﻞ اﻧﺘﮕﺮاﻟﮕﻴﺮ اﺳﺘﻔﺎده ﻣﻲ ﺷﻮد‪.‬‬

‫ﺳﻴﺴﺘﻢ ﻗﺪرت اﺳﺖ‪.‬‬

‫‪ -2-2‬ﭘﺎﺳﺦ دﻳﻨﺎﻣﻴﻜﻲ ﺳﻴﺴﺘﻢ ﻗﺪرت دوﻣﻨﻄﻘﻪ اي ﻛﻨﺘﺮل‬ ‫ﻧﺸﺪه‬

‫ﺷﻜﻞ)‪(2‬ﭘﺎﺳﺦ ﺧﻄﺎي ﻓﺮﻛﺎﻧﺲ ﺳﻴﺴﺘﻢ دو ﻣﻨﻄﻘﻪ اي‬

‫‪437‬‬

‫ﺷﻜﻞ ﺑﺎﻻ ﺧﻄﺎي ﻓﺮﻛﺎﻧﺲ ﺳﻴﺴﺘﻢ دو ﻣﻨﻄﻘﻪ اي را ﻧﺸﺎن ﻣﻲ دﻫﺪ‬ ‫ﻫﻤﺎﻧﻄﻮر ﻛﻪ در ﺷﻜﻞ ﻣﺸﺨﺺ اﺳﺖ ﺑﺎ ﺑﻜﺎرﺑﺮدن اﻧﺘﮕﺮاﻟﮕﻴﺮ در ﻣﺴﻴﺮ‬ ‫ﻓﻴﺪﺑﻚ ﺗﻮاﻧﺴﺘﻴﻢ ﺧﻄﺎي ﺣﺎﻟﺖ ﻣﺎﻧﺪﮔﺎر ﺳﻴﺴﺘﻢ را ﺑﻪ ﺻﻔﺮ ﺑﺮﺳﺎﻧﻴﻢ‪.‬‬

‫ﺷﻜﻞ)‪ (4‬ﺳﻴﺴﺘﻢ دو ﻣﻨﻄﻘﻪ اي ﻛﻨﺘﺮل ﺷﺪه‬

‫در ﺷﻜﻞ ‪ B ، 4‬ضريب گرايش فرکانس نام دارد‪.‬خطای کنترل‬ ‫منطقه ‪ ، ACE‬عبارتست از ترکيب خطی دو خطای سيستم يعنی‬ ‫‪ ∆f‬و ‪ ∆p12‬که در سيستم کنترل بايد صفر گردند ‪.‬در اينجا برای‬ ‫دو منطقه‪:‬‬ ‫)‪(5‬‬

‫‪ACE1 = ∆p12 + B1 ∆f 1‬‬

‫)‪(6‬‬

‫‪ACE 2 = ∆p 21 + B2 ∆f 2‬‬

‫وﺑﻨﺎﺑﺮاﻳﻦ ‪ ∆p c1‬و ‪ ∆p c 2‬ﻋﺒﺎرﺗﻨﺪ از ‪:‬‬ ‫) ‪(7‬‬

‫‪∆p c1 = − ki1 ∫ ACE1 dt‬‬

‫)‪(8‬‬

‫‪∆p c 2 = −ki2 ∫ ACE 2 dt‬‬

‫در اﻳﻦ ﺣﺎﻟﺖ ﺑﺮاي ﺗﻌﻴﻴﻦ ﭘﺎﺳﺦ ﺳﻴﺴﺘﻢ در ﺣﺎﻟﺖ ﻣﺎﻧﺪﮔﺎر‪:‬‬ ‫) ‪(9‬‬ ‫)‪(10‬‬

‫‪∆p120 + B1 ∆f 0 = 0‬‬ ‫‪− ∆p120 + B1 ∆f 0 = 0‬‬

‫اﻳﻦ ﻣﻌﺎدﻻت ﻓﻘﻂ در ﺷﺮاﻳﻂ زﻳﺮ ﺑﺮﻗﺮار ﺧﻮاﻫﺪ ﺑﻮد ‪:‬‬

‫ﺷﻜﻞ )‪(6‬ﺧﻄﺎي ﺗﻮان اﻧﺘﻘﺎﻟﻲ ﺑﻴﻦ دو ﻣﻨﻄﻘﻪ‬

‫‪∆f 0 = ∆p12 = 0‬‬ ‫)‪(11‬‬ ‫‪ -4-2‬ﭘﺎﺳﺦ دﻳﻨﺎﻣﻴﻜﻲ ﺳﻴﺴﺘﻢ ﻗﺪرت دوﻣﻨﻄﻘﻪ اي ﻛﻨﺘﺮل‬

‫‪ –3‬ﺳﻴﺴﺘﻢ ﻫﺎي ﻓﺎزي‬ ‫ﺳﻴﺴﺘﻢ ﻫﺎي ﻓﺎزي‪ ،‬ﺳﻴﺴﺘﻢ ﻫﺎﻳﻲ ﻫﺴﺘﻨﺪﺑﺎ ﺗﻌﺮﻳﻒ دﻗﻴﻖ و ﻛﻨﺘﺮل‬ ‫ﻓﺎزي ﻧﻴﺰ ﻧﻮع ﺧﺎﺻﻲ از ﻛﻨﺘﺮل ﻏﻴﺮ ﺧﻄﻲ ﻣﻲ ﺑﺎﺷﺪ اﺳﺎﺳﺄ ﮔﺮﭼﻪ ﺳﻴﺴﺘﻢ‬ ‫ﻫﺎي ﻓﺎزي ﭘﺪﻳﺪه ﻫﺎي ﻏﻴﺮ ﻗﻄﻌﻲ و ﻧﺎﻣﺸﺨﺺ را ﺗﻮﺻﻴﻒ ﻣﻲ ﻛﻨﻨﺪ ‪ ،‬ﺑﺎ‬ ‫اﻳﻦ ﺣﺎل ﺧﻮد ﺗﺌﻮري ﻓﺎزي ﻳﻚ ﺗﺌﻮري دﻗﻴﻖ ﻣﻲ ﺑﺎﺷﺪ ‪ .‬ﺳﻴﺴﺘﻢ ﻫﺎي‬ ‫ﻓﺎزي اﻣﺮوزه ‪ ،‬در ﻃﻴﻒ وﺳﻴﻌﻲ از ﻋﻠﻮ م و ﻓﻨﻮن ﻛﺎرﺑﺮد ﭘﻴﺪا ﻛﺮده اﻧﺪ ‪ .‬از‬ ‫ﻛﻨﺘﺮل ‪ ،‬ﭘﺮدازش ﺳﻴﮕﻨﺎل ‪ ،‬ارﺗﺒﺎﻃﺎت ‪ ،‬ﺳﺎﺧﺖ ﻣﺪارﻫﺎي ﻣﺠﺘﻤﻊ و‬ ‫ﺳﻴﺴﺘﻢ ﻫﺎي ﺧﺒﺮه ﮔﺮﻓﺘﻪ ﺗﺎ ﺑﺎزرﮔﺎﻧﻲ ‪ ،‬ﭘﺰﺷﻜﻲ ‪ ،‬و‪ ......‬ﺑﺎ اﻳﻦ ﺣﺎل ﺑﻪ‬ ‫ﻋﻨﻮان ﻳﻜﻲ از ﻣﻬﻤﺘﺮﻳﻦ ﻛﺎرﺑﺮدﻫﺎي آن ﺣﻞ ﻣﺴﺎﺋﻞ و ﻣﺸﻜﻼت ﻛﻨﺘﺮل را‬ ‫ﻣﻲ ﺗﻮان ﺑﻴﺎن ﻛﺮد ﺳﻴﺘﻢ ﻫﺎي ﻓﺎزي را ﻣﻲ ﺗﻮان ﺑﻪ ﻋﻨﻮان ﻛﻨﺘﺮل ﻛﻨﻨﺪه‬ ‫ﺣﻠﻘﻪ ﺑﺎز و ﻳﺎ ﻛﻨﺘﺮل ﻛﻨﻨﺪه ﺣﻠﻘﻪ ﺑﺴﺘﻪ ﻣﻮرد اﺳﺘﻔﺎده ﻗﺮار داد ‪.‬‬ ‫ﻫﻨﮕﺎﻣﻲ ﻛﻪ ﺑﻪ ﻋﻨﻮان ﻛﻨﺘﺮل ﻛﻨﻨﺪه ﺣﻠﻘﻪ ﺑﺎز اﺳﺘﻔﺎده ﻣﻲ ﺷﻮد ‪ ،‬ﺳﻴﺴﺘﻢ‬ ‫ﻓﺎزي ﻣﻌﻤﻮﻷ ﺑﻌﻀﻲ از ﭘﺎراﻣﺘﺮﻫﺎي ﻛﻨﺘﺮل را ﻣﻌﻴﻦ ﻛﺮده و آﻧﮕﺎه ﺳﻴﺴﺘﻢ‬ ‫ﻣﻄﺎﺑﻖ ﺑﺎ اﻳﻦ ﭘﺎراﻣﺘﺮﻫﺎي ﻛﻨﺘﺮل ﻛﺎر ﻣﻲ ﻛﻨﺪ ‪.‬ﺑﺴﻴﺎري از ﻛﺎرﺑﺮدﻫﺎي‬ ‫ﺳﻴﺴﺘﻢ ﻓﺎزي در اﻟﻜﺘﺮوﻧﻴﻚ ﺑﻪ اﻳﻦ دﺳﺘﻪ ﺗﻌﻠﻖ دارﻧﺪ ‪.‬ﻫﻨﮕﺎﻣﻴﻜﻪ ﻛﻪ‬ ‫ﺳﻴﺴﺘﻢ ﻓﺎزي ﺑﻪ ﻋﻨﻮان ﻳﻚ ﻛﻨﺘﺮل ﻛﻨﻨﺪه ﺣﻠﻘﻪ ﺑﺴﺘﻪ اﺳﺘﻔﺎده ﻣﻲ ﺷﻮد ‪،‬‬ ‫در اﻳﻦ ﺣﺎﻟﺖ ﺧﺮوﺟﻲ ﻫﺎي ﻓﺮآﻳﻨﺪ را اﻧﺪازه ﮔﻴﺮي ﻛﺮده و ﺑﻪ ﻃﻮر‬ ‫ﻫﻤﺰﻣﺎن ﻋﻤﻠﻴﺎت ﻛﻨﺘﺮل را اﻧﺠﺎم ﻣﻲ دﻫﺪ ‪.‬ﻛﺎرﺑﺮدﻫﺎي ﺳﻴﺴﺘﻢ ﻫﺎي ﻓﺎزي‬ ‫در ﻓﺮآﻳﻨﺪ ﻫﺎي ﺻﻨﻌﺘﻲ ﺑﻪ اﻳﻦ دﺳﺘﻪ ﺗﻌﻠﻖ دارﻧﺪ‪.‬‬

‫ﺷﺪه‬

‫ﺷﻜﻞ )‪ (5‬ﺧﻄﺎي ﻓﺮﻛﺎﻧﺲ ﺳﻴﺴﺘﻢ دو ﻣﻨﻄﻘﻪ اي ﻛﻨﺘﺮل ﺷﺪه‬

‫‪438‬‬

‫‪ 1-3‬روش ﻣﻤﺪاﻧﻲ‬ ‫در اﻳﻦ ﻣﻘﺎﻟﻪ ‪ 5‬ﭘﺎراﻣﺘﺮ ﺳﻴﺴﺘﻢ ﺗﻐﻴﻴﺮ ﻣﻲ ﻛﻨﺪ ﻛﻪ ﺑﻪ ﻋﻨﻮان ورودي‬

‫ﻫﺎي ﺳﻴﺴﺘﻢ ﻫﺎي ﻓﺎزي ﺗﻠﻘﻲ ﻣﻲ ﮔﺮدﻧﺪ ‪.‬اﻳﻦ ‪ 5‬ﭘﺎراﻣﺘﺮ ﻋﺒﺎرﺗﻨﺪ از ‪Tt‬‬ ‫ﺛﺎﺑﺖ زﻣﺎﻧﻲ ﺗﻮرﺑﻴﻦ‪ k p ،‬ﮔﻴﻦ ﺳﻴﺴﺘﻢ ﻗﺪرت‪ B ،‬ﺿﺮﻳﺐ ﮔﺮاﻳﺶ‬ ‫ﻓﺮﻛﺎﻧﺲ ‪ T12‬ﺿﺮﻳﺐ ﺳﻨﻜﺮوﻧﻴﺰاﺳﻴﻮن و ‪ T p‬ﺛﺎﺑﺖ زﻣﺎﻧﻲ ﺳﻴﺴﺘﻢ ﻗﺪرت‬ ‫ﻛﻪ ﺑﺮاي ‪ 5‬ﭘﺎراﻣﺘﺮ ازﺗﻮاﺑﻊ ﻣﺜﻠﺜﻲ اﺳﺘﻔﺎده ﻛﺮدﻳﻢ ‪.‬‬

‫ﺷﻜﻞ )‪(10‬ﺗﺎﺑﻊ ﺗﻌﻠﻖ ﺛﺎﺑﺖ زﻣﺎﻧﻲ ﺗﻮرﺑﻴﻦ‬

‫ﺷﻜﻞ )‪ (7‬ﺗﺎﺑﻊ ﺗﻌﻠﻖ ﺿﺮﻳﺐ ﺳﻨﻜﺮوﻧﻴﺰاﺳﻴﻮن‬

‫ﺷﻜﻞ )‪ (11‬ﺗﺎﺑﻊ ﺗﻌﻠﻖ ﮔﻴﻦ ﺳﻴﺴﺘﻢ ﻗﺪرت‬

‫ﺧﺮوﺟﻲ ﺳﻴﺴﺘﻢ ﻓﺎزي ﻛﻪ ﮔﻴﻦ اﻧﺘﮕﺮال ﮔﻴﺮ ﻣﻲ ﺑﺎﺷﺪ ‪ k‬ﻧﺎﻣﻴﺪه ﺷﺪه‬ ‫اﺳﺖ ﻛﻪ ﺗﺎﺑﻊ ﺗﻌﻠﻖ آن در ﺷﻜﻞ زﻳﺮ ﻣﺸﺨﺺ اﺳﺖ ‪:‬‬

‫ﺷﻜﻞ )‪ (8‬ﺗﺎﺑﻊ ﺗﻌﻠﻖ ﺛﺎﺑﺖ زﻣﺎﻧﻲ ﺳﻴﺴﺘﻢ ﻗﺪرت‬

‫ﺷﻜﻞ )‪ (12‬ﺗﺎﺑﻊ ﺗﻌﻠﻖ ﺧﺮوﺟﻲ‬

‫ﺷﻜﻞ)‪(9‬ﺗﺎﺑﻊ ﺗﻌﻠﻖ ﺿﺮﻳﺐ ﮔﺮاﻳﺶ ﻓﺮﻛﺎﻧﺲ‬

‫‪439‬‬

If (Tp is s) and (T12 is m) and (b is l) and (Tt is m) and (Kp is m) then (k is xs)

‫ ﻗﻮاﻧﻴﻦ ﻓﺎزي‬2-3

If (Tp is s) and (T12 is m) and (b is l) and (Tt is m) and (Kp is l) then (k is vs))

‫ﺑﻪ دﻟﻴﻞ زﻳﺎد ﺑﻮدن ﻗﻮاﻧﻴﻦ از ذﻛﺮ ﺗﻤﺎﻣﻲ ﻗﻮاﻧﻴﻦ ﺧﻮدداري ﻧﻤﻮده و‬ .‫ﻓﻘﻂ ﭼﻨﺪ ﻗﺎﻧﻮن را ذﻛﺮ ﻣﻲ ﻛﻨﻴﻢ‬

If (Tp is s) and (T12 is m) and (b is l) and (Tt is l) and (Kp is s) then (k is vs) ) If (Tp is s) and (T12 is m) and (b is l) and (Tt is l) and (Kp is m) then (k is vs) (1) If (Tp is s) and (T12 is m) and (b is l) and (Tt is l) and (Kp is l) then (k is vs) (1)

If (Tp is s) and (T12 is s) and (b is s) and (Tt is s) and (Kp is s) then (k is vm)

If (Tp is s) and (T12 is l) and (b is s) and (Tt is s) and (Kp is s) then (k is xl) (1)

If (Tp is s) and (T12 is s) and (b is s) and (Tt is s) and (Kp is m) then (k is l)

If (Tp is s) and (T12 is l) and (b is s) and (Tt is s) and (Kp is m) then (k is vl) (1)

If (Tp is s) and (T12 is s) and (b is s) and (Tt is s) and (Kp is l) then (k is xl)

If (Tp is s) and (T12 is l) and (b is s) and (Tt is s) and (Kp is l) then (k is vl) (1)

If (Tp is s) and (T12 is s) and (b is s) and (Tt is m) and (Kp is s) then (k is vm)

‫ – ﻧﺘﺎﻳﺞ روش ﻣﻤﺪاﻧﻲ‬3-3

If (Tp is s) and (T12 is s) and (b is s) and (Tt is m) and (Kp is m) then (k is vm) If (Tp is s) and (T12 is s) and (b is s) and (Tt is m) and (Kp is l) then (k is vm)

‫ در ﻧﻈﺮﮔﺮﻓﺘﻪ اﻳﻢ‬1 ‫ﭘﺎراﻣﺘﺮﻫﺎي ﺳﻴﺴﺘﻢ ﻧﻤﻮﻧﻪ را ﻣﻄﺎﺑﻖ ﺟﺪول‬

If (Tp is s) and (T12 is s) and (b is s) and (Tt is l) and (Kp is s) then (k is m)

(1) ‫ﺟﺪول‬

If (Tp is s) and (T12 is s) and (b is s) and (Tt is l) and (Kp is m) then (k is m) If (Tp is s) and (T12 is s) and (b is s) and (Tt is l) and (Kp is l) then (k is m) If (Tp is s) and (T12 is s) and (b is m) and (Tt is s) and (Kp is s) then (k is s) If (Tp is s) and (T12 is s) and (b is m) and (Tt is s) and (Kp is m) then (k is s) If (Tp is s) and (T12 is s) and (b is m) and (Tt is s) and (Kp is l) then (k is s) If (Tp is s) and (T12 is s) and (b is m) and (Tt is m) and (Kp is s) then (k is s) If (Tp is s) and (T12 is s) and (b is m) and (Tt is m) and (Kp is m) then (k is s) If (Tp is s) and (T12 is s) and (b is m) and (Tt is m) and (Kp is l) then (k is s) If (Tp is s) and (T12 is s) and (b is m) and (Tt is l) and (Kp is s) then (k is xs) If (Tp is s) and (T12 is s) and (b is m) and (Tt is l) and (Kp is m) then (k is xs If (Tp is s) and (T12 is s) and (b is m) and (Tt is l) and (Kp is l) then (k is vs) If (Tp is s) and (T12 is s) and (b is l) and (Tt is s) and (Kp is s) then (k is xs) If (Tp is s) and (T12 is s) and (b is l) and (Tt is s) and (Kp is m) then (k is xs) If (Tp is s) and (T12 is s) and (b is l) and (Tt is s) and (Kp is l) then (k is vs) If (Tp is s) and (T12 is s) and (b is l) and (Tt is m) and (Kp is s) then (k is vs) If (Tp is s) and (T12 is s) and (b is l) and (Tt is m) and (Kp is m) then (k is vs) If (Tp is s) and (T12 is s) and (b is l) and (Tt is m) and (Kp is l) then (k is vs) If (Tp is s) and (T12 is s) and (b is l) and (Tt is l) and (Kp is s) then (k is vs) If (Tp is s) and (T12 is s) and (b is l) and (Tt is l) and (Kp is m) then (k is vs) If (Tp is s) and (T12 is s) and (b is l) and (Tt is l) and (Kp is l) then (k is vs) If (Tp is s) and (T12 is m) and (b is s) and (Tt is s) and (Kp is s) then (k is xl) If (Tp is s) and (T12 is m) and (b is s) and (Tt is s) and (Kp is m) then (k is xl) If (Tp is s) and (T12 is m) and (b is s) and (Tt is s) and (Kp is l) then (k is vl) If (Tp is s) and (T12 is m) and (b is s) and (Tt is m) and (Kp is s) then (k is vm)

1 ‫( ﺧﻄﺎي ﻓﺮﻛﺎﻧﺲ ﻣﻨﻄﻘﻪ‬13) ‫ﺷﻜﻞ‬

If (Tp is s) and (T12 is m) and (b is s) and (Tt is m) and (Kp is m) then (k is xm) If (Tp is s) and (T12 is m) and (b is s) and (Tt is m) and (Kp is l) then (k is m) If (Tp is s) and (T12 is m) and (b is s) and (Tt is l) and (Kp is s) then (k is m) If (Tp is s) and (T12 is m) and (b is s) and (Tt is l) and (Kp is m) then (k is s) If (Tp is s) and (T12 is m) and (b is s) and (Tt is l) and (Kp is l) then (k is xs) If (Tp is s) and (T12 is m) and (b is m) and (Tt is s) and (Kp is s) then (k is xm) If (Tp is s) and (T12 is m) and (b is m) and (Tt is s) and (Kp is m) then (k is xm) If (Tp is s) and (T12 is m) and (b is m) and (Tt is s) and (Kp is l) then (k is xm) If (Tp is s) and (T12 is m) and (b is m) and (Tt is m) and (Kp is s) then (k is s) If (Tp is s) and (T12 is m) and (b is m) and (Tt is m) and (Kp is m) then (k is s If (Tp is s) and (T12 is m) and (b is m) and (Tt is m) and (Kp is l) then (k is xs) If (Tp is s) and (T12 is m) and (b is m) and (Tt is l) and (Kp is s) then (k is xs)) If (Tp is s) and (T12 is m) and (b is m) and (Tt is l) and (Kp is m) then (k is xs) If (Tp is s) and (T12 is m) and (b is m) and (Tt is l) and (Kp is l) then (k is vs)) If (Tp is s) and (T12 is m) and (b is l) and (Tt is s) and (Kp is s) then (k is s) (1) If (Tp is s) and (T12 is m) and (b is l) and (Tt is s) and (Kp is m) then (k is m) If (Tp is s) and (T12 is m) and (b is l) and (Tt is s) and (Kp is l) then (k is m) )

2 ‫(ﺧﻄﺎي ﻓﺮﻛﺎﻧﺲ ﻣﻨﻄﻘﻪ‬14)‫ﺷﻜﻞ‬

If (Tp is s) and (T12 is m) and (b is l) and (Tt is m) and (Kp is s) then (k is xs))

440

‫ﺷﻜﻞ )‪(15‬ﺧﻄﺎي ﺗﻮان اﻧﺘﻘﺎﻟﻲ ﺑﻴﻦ دو ﻣﻨﻄﻘﻪ‬

‫ﺷﻜﻞ)‪(18‬ﺧﻄﺎي ﺗﻮان اﻧﺘﻘﺎﻟﻲ ﺑﻴﻦ دو ﻣﻨﻄﻘﻪ‬

‫‪ -4‬ﻣﻘﺎﻳﺴﻪ ﺳﻮﮔﻨﻮ و ﻣﻤﺪاﻧﻲ‬

‫‪ - 4-3‬روش ﺳﻮﮔﻨﻮ‬ ‫ﺗﻮاﺑﻊ ﺗﻌﻠﻖ ورودي در اﻳﻦ ﺳﻴﺴﺘﻢ ﻓﺎزي ﻫﻤﺎﻧﻨﺪ روش ﻣﻤﺪاﻧﻲ اﺳﺖ‬ ‫ﺑﺎ اﻳﻦ ﺗﻔﺎوت ﻛﻪ ﻣﻘﺎدﻳﺮ ﺧﺮوﺟﻲ ﻫﺮ ﻗﺎﻧﻮن ﺑﻪ ﺻﻮرت ﺗﺮﻛﻴﺐ ﺧﻄﻲ از‬ ‫ورودي ﻫﺎا ﺳﺖ‪.‬‬

‫ﺷﻜﻞ)‪(19‬ﺧﻄﺎي ﻓﺮﻛﺎﻧﺲ ﻣﻨﻄﻘﻪ ‪1‬‬

‫ﺷﻜﻞ )‪(16‬ﺧﻄﺎي ﻓﺮﻛﺎﻧﺲ ﻣﻨﻄﻘﻪ ‪1‬‬

‫ﺷﻜﻞ)‪(20‬ﺧﻄﺎي ﻓﺮﻛﺎﻧﺲ ﻣﻨﻄﻘﻪ‪2‬‬

‫‪ -5‬ﻋﻤﻠﻜﺮد ﺳﻮﮔﻨﻮ و ﻣﻤﺪاﻧﻲ در ﺷﺮاﻳﻂ ﻧﺎﻣﻲ‬ ‫ﭘﺎراﻣﺘﺮ ﻫﺎي ﻧﺎﻣﻲ ﺳﻴﺴﺘﻢ در ﺟﺪول ‪ 2‬آﻣﺪه اﺳﺖ ‪:‬‬ ‫ﺟﺪول )‪(2‬‬ ‫‪KP=120‬‬ ‫ﺷﻜﻞ)‪(17‬ﺧﻄﺎي ﻓﺮﻛﺎﻧﺲ ﻣﻨﻄﻘﻪ ‪2‬‬

‫‪441‬‬

‫‪Tt=0.3‬‬

‫‪B=0.425‬‬

‫‪T12=0.545‬‬

‫‪Tp=20‬‬

‫ ﻧﺘﻴﺠﻪ ﮔﻴﺮي‬-6 ‫ﻫﺪف ﻧﻬﺎﻳﻲ ﻛﻨﺘﺮل ﺑﺎر – ﻓﺮﻛﺎﻧﺲ اﻳﺠﺎد ﺗﻌﺎدل ﺑﻴﻦ ﺗﻮﻟﻴﺪ و ﻣﺼﺮف‬ ، ‫ﻣﻲ ﺑﺎﺷﺪ و ﺑﻪ ﺧﺎﻃﺮ ﭘﻴﭽﻴﺪﮔﻲ و ﭼﻨﺪ ﻣﺘﻐﻴﺮه ﺑﻮدن ﺳﻴﺴﺘﻢ ﻗﺪرت‬ ‫روش ﻛﻨﺘﺮل ﺳﻨﺘﻲ ﻧﻤﻲ ﺗﻮاﻧﺪ راه ﺣﻞ ﻣﻨﺎﺳﺒﻲ ﺑﺎﺷﺪ ﺑﻪ ﻫﻤﻴﻦ ﺧﺎﻃﺮ‬ ‫ﻧﺘﺎﻳﺞ‬.‫ﻛﻨﺘﺮل ﻛﻨﻨﺪه ﻫﺎي ﻣﻘﺎوم و ﻫﻮﺷﻤﻨﺪ ﻣﻮرد اﺳﺘﻔﺎده ﻗﺮار ﻣﻲ ﮔﻴﺮﻧﺪ‬ ‫ﻧﺸﺎن داده ﺷﺪه در ﺷﻜﻞ ﻫﺎ ﺣﺎﻛﻲ از اﻳﻦ اﺳﺖ ﻛﻪ ﺑﺎ ﺟﺎﻳﮕﺰﻳﻨﻲ ﻧﺘﺮل‬ ‫ﻛﻨﻨﺪه ﻓﺎزي در ﺷﺮاﻳﻄﻲ ﻛﻪ ﭘﺎراﻣﺘﺮﻫﺎي ﺳﻴﺴﺘﻢ ﺑﺪون ﺗﻐﻴﻴﺮ ﺑﻤﺎﻧﺪ ﻣﺎﻧﻨﺪ‬ ‫ﻛﻨﺘﺮل ﻛﻨﻨﺪه اﻧﺘﮕﺮاﻟﮕﻴﺮ ﻛﻼﺳﻴﻚ ﺟﻮاب ﺧﻮﺑﻲ ﺧﻮاﻫﺪ داد وﻟﻲ در‬ ‫ﺻﻮرﺗﻲ ﻛﻪ ﭘﺎراﻣﺘﺮﻫﺎي ﺳﻴﺴﺘﻢ ﺑﻨﺎ ﺑﺮ ﻫﺮ ﻋﻠﺘﻲ ﺗﻐﻴﻴﺮ ﻧﻤﺎﻳﺪ ﻛﻨﺘﺮل ﻛﻨﻨﺪه‬ ‫ﻓﺎزي اﻳﻦ ﺗﻐﻴﻴﺮات را ﻟﺤﺎظ ﻛﺮده و ﺿﻤﻦ ﺻﻔﺮ ﻛﺮدن ﺧﻄﺎي ﺣﺎﻟﺖ‬ ‫ﺑﺎ ﻣﻘﺎﻳﺴﻪ ﻧﺘﺎﻳﺞ ﺣﺎﺻﻞ ﺷﺪه از‬. ‫داﺋﻤﻲ ﭘﺎﺳﺦ ﮔﺬراي ﺧﻮﺑﻲ ﺧﻮاﻫﺪ داد‬ ‫روش ﻫﺎي ﻣﻤﺪاﻧﻲ و ﺳﻮﮔﻨﻮ ﻧﺸﺎن ﻣﻲ دﻫﺪ ﻛﻪ روش ﻣﻤﺪاﻧﻲ ﺗﻘﺮﻳﺒﺄ‬ ‫ﺳﺮﻳﻌﺘﺮ از روش ﺳﻮﮔﻨﻮ اﺳﺖ ﻛﻪ اﻳﻦ ﻧﺘﻴﺠﻪ ﺣﺎﻛﻲ از اﻳﻦ اﺳﺖ ﻛﻪ‬ ‫ﺧﺮوﺟﻲ ﻛﻨﺘﺮل ﻛﻨﻨﺪه ﻣﻤﺪاﻧﻲ ﻛﻪ ﮔﻴﻦ اﻧﺘﮕﺮاﻟﮕﻴﺮ اﺳﺖ اﻧﺪازه ﺑﺰرﮔﺘﺮي‬ ‫ﻧﺴﺒﺖ ﺑﻪ ﺧﺮوﺟﻲ ﻛﻨﺘﺮل ﻛﻨﻨﺪه ﺳﻮﮔﻨﻮ دارد ﻛﻪ اﺧﺘﻼف ﻧﺎﺷﻲ از روش‬ .‫ﻫﺎي ﻧﺎﻓﺎزي ﺳﺎز اﺳﺖ‬

‫ در ﺷﺮاﻳﻂ ﻧﺎﻣﻲ‬1 ‫( ﺧﻄﺎي ﻓﺮﻛﺎﻧﺲ ﻣﻨﻄﻘﻪ‬21)‫ﺷﻜﻞ‬

‫ ﻣﺮاﺟﻊ‬-7 [1] Grul Ertu “A fuzzy gain scheduling PI controller application for an interconnection power system’’Electric power system Research(2005) [2] Ashraf Mohamad Hemeida“Wavelet neural network load frequency controller’’Energy Conversion and management2005 [3] Ahmed M. Kassem’’Neural predictive controller of a two-area load frequency control for interconnected power system’’Control Technology Dep., Industrial Education College,Peni-Suef Received 17 April 2010; accepted 6 May 2010 [4] Venkata.B ,Jayaram Kumar’’Robust Fuzzy Load frequency Controller For Two Area Interconnected Power System’’Journal of Theoretical and Applied informationTechnology2005-2009 [5]Grul،Ertu،ilhan،kocaarslan“ A fuzzy gain scheduling PI

‫ در ﺷﺮاﻳﻂ ﻧﺎﻣﻲ‬2 ‫( ﺧﻄﺎي ﻓﺮﻛﺎﻧﺲ ﻣﻨﻄﻘﻪ‬22) ‫ﺷﻜﻞ‬

controller application for an interconnected electrical power system’’Electric Power System Research2005 [6] Atre.A، Patile.Y.R’’Two Area Load Frequency Control with Fuzzy Gain Scheduling of PI’’emerging Trends in Engineering and Technology, 2008. ICETET [7] Lee Jae Ho، park Bae Jin’’Robust Load Frequency Control for uncertain nonlinear power system:A fuzzy logic approach’’nformation Sciences 176 (2006) 3520– 3537

‫( ﺧﻄﺎي ﺗﻮان اﻧﺘﻘﺎﻟﻲ در ﺷﺮاﻳﻂ ﻧﺎﻣﻲ‬23)‫ﺷﻜﻞ‬

442

Suggest Documents